scholarly journals Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast

2014 ◽  
Vol 42 (15) ◽  
pp. 9573-9587 ◽  
Author(s):  
Eugenia Cisneros-Barroso ◽  
Tula Yance-Chávez ◽  
Ayako Kito ◽  
Reiko Sugiura ◽  
Alba Gómez-Hierro ◽  
...  

Abstract Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calcium-activated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca2+/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca2+. Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca2+. Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca2+. Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca2+, due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.

2003 ◽  
Vol 23 (1) ◽  
pp. 216-228 ◽  
Author(s):  
Sandra S. McAllister ◽  
Michelle Becker-Hapak ◽  
Giuseppe Pintucci ◽  
Michele Pagano ◽  
Steven F. Dowdy

ABSTRACT Hepatocyte growth factor (HGF) signaling via its receptor, the proto-oncogene Met, alters cell proliferation and motility and has been associated with tumor metastasis. HGF treatment of HepG2 human hepatocellular carcinoma cells induces cell migration concomitant with increased levels of the p27kip1 cyclin-cdk inhibitor. HGF signaling resulted in nuclear export of endogenous p27 to the cytoplasm, via Ser-10 phosphorylation, where it colocalized with F-actin. Introduction of transducible p27 protein (TATp27) was sufficient for actin cytoskeletal rearrangement and migration of HepG2 cells. TATp27 mutational analysis identified a novel p27 C-terminal domain required for cell migration, distinct from the N-terminal cyclin-cyclin-dependent kinase (cdk) binding domain. Loss or disruption of the p27 C-terminal domain abolished both actin rearrangement and cell migration. The cell-scattering activity of p27 occurred independently of its cell cycle arrest functions and required cytoplasmic localization of p27 via Ser-10 phosphorylation. Furthermore, Rac GTPase was necessary for p27-dependent migration but alone was insufficient for HepG2 cell migration. These results predicted a migration defect in p27-deficient cells. Indeed, p27-deficient primary fibroblasts failed to migrate, and reconstitution with TATp27 rescued the motility defect. These observations define a novel role for p27 in cell motility that is independent of its function in cell cycle inhibition.


2000 ◽  
Vol 20 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
Mark W. Jackson ◽  
Steven J. Berberich

ABSTRACT The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.


PLoS ONE ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. e7035 ◽  
Author(s):  
Emmanuelle Deniaud ◽  
Joël Baguet ◽  
Roxane Chalard ◽  
Bariza Blanquier ◽  
Lilia Brinza ◽  
...  

Placenta ◽  
2019 ◽  
Vol 83 ◽  
pp. e65
Author(s):  
Andrea Lis Miranda ◽  
Lucille Kourdova ◽  
Ana Cristina Racca ◽  
María Laura Rojas ◽  
Mariano Matías Cruz del Puerto ◽  
...  

2003 ◽  
Vol 23 (1) ◽  
pp. 359-369 ◽  
Author(s):  
Nobuhito Goda ◽  
Heather E. Ryan ◽  
Bahram Khadivi ◽  
Wayne McNulty ◽  
Robert C. Rickert ◽  
...  

ABSTRACT A classical cellular response to hypoxia is a cessation of growth. Hypoxia-induced growth arrest differs in different cell types but is likely an essential aspect of the response to wounding and injury. An important component of the hypoxic response is the activation of the hypoxia-inducible factor 1 (HIF-1) transcription factor. Although this transcription factor is essential for adaptation to low oxygen levels, the mechanisms through which it influences cell cycle arrest, including the degree to which it cooperates with the tumor suppressor protein p53, remain poorly understood. To determine broadly relevant aspects of HIF-1 function in primary cell growth arrest, we examined two different primary differentiated cell types which contained a deletable allele of the oxygen-sensitive component of HIF-1, the HIF-1α gene product. The two cell types were murine embryonic fibroblasts and splenic B lymphocytes; to determine how the function of HIF-1α influenced p53, we also created double-knockout (HIF-1α null, p53 null) strains and cells. In both cell types, loss of HIF-1α abolished hypoxia-induced growth arrest and did this in a p53-independent fashion. Surprisingly, in all cases, cells lacking both p53 and HIF-1α genes have completely lost the ability to alter the cell cycle in response to hypoxia. In addition, we have found that the loss of HIF-1α causes an increased progression into S phase during hypoxia, rather than a growth arrest. We show that hypoxia causes a HIF-1α-dependent increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27; we also find that hypophosphorylation of retinoblastoma protein in hypoxia is HIF-1α dependent. These data demonstrate that the transcription factor HIF-1 is a major regulator of cell cycle arrest in primary cells during hypoxia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4290-4290
Author(s):  
Ina Fabian ◽  
Debby Haite ◽  
Avital Levitov ◽  
Drora Halperin ◽  
Itamar Shalit

Abstract We previously reported that the fluoroquinolone moxifloxacin (MXF) inhibits NF-kB, mitogen-activated protein kinase activation and the synthesis of proinflammatory cytokines in activated human monocytic cells (AAC48:1974,2004). Since MXF acts on topoisomerase II (Topo II) in mammalian cells, we investigated its effect in combination with another Topo II inhibitor, VP-16, on cell proliferation (by the MTT method), cell cycle, caspase-3 activity and proinflammatory cytokine release in THP-1 and Jurkat cells. THP-1 cells were incubated for 24 h with 0.5–3 μg/ml VP-16 in the presence or absence of 5–20 μg/ml MXF. VP-16 induced a dose dependent decrease in cell proliferation. An additional 2.5-and 1.6-fold decrease in cell proliferation was observed upon incubation of the cells with 0.5 or 1 μg/ml VP-16 and 20 μg/ml MXF, respectively (up to 69% inhibition). To further elucidate the mechanism of the antiproliferative activity of MXF, its effect on cell cycle progression was investigated. In control cultures 1%, 45%,18% and 36% of cells were in G0, G1, S and G2/M phases at 24 h, respectively. In contrast, in cultures treated with 1 μg/ml VP-16 and VP-16+ 20 μg/ml MXF, the number of cells in G1 decreased to 5.4 and 6.5%, respectively, while the number of cells in S phase increased to 25.5 and 42%, respectively and the number of cells in G2/M cells increased to 60 and 44%, respectively. These data provide evidence for S-G2/M cell cycle arrest induced by VP-16 and that addition of MXF shifted the S-G2/M arrest more towards the S phase. Since the antiproliferative effects of MXF could also be attributed to apoptotic cell death in addition to cell cycle arrest, we investigated the effect of the drugs on apoptosis. Using the fluorogenic assay for caspse-3 activity, we show that incubation of THP-1 cells for 6 h with 1.5 μg/ml VP-16 resulted in 630±120 unit/50μg protein of caspase-3 activity while the combination of 1.5 μg/ml VP-16 and 20 μg/ml MXF enhanced caspase-3 activity up to 1700±340 units/50μg protein (vs.233±107 in control cells), indicating that MXF synergises with VP-16 in activation of caspase-3. In Jurkat cells, the addition of 0.5 or 1 μg/ml VP-16, did not affect cell proliferation while in the presence of 20 μg/ml MXF and 1 μg/ml VP-16 there was a 62% decrease in cell proliferation (p<0.05). Exposure of Jurkat cells to 3 μg/ml VP-16 alone resulted in 504±114 units/50μg protein of caspase-3 activity and the addition of 20μg/ml MXF enhanced caspase-3 activity up to 1676± 259 units/50μg protein (vs 226±113 units/50μg protein in control cells). We further examined pro-inflammatory cytokine secretion upon stimulation of THP-1 cells with VP-16, MXF or their combination. VP-16 alone at 3 μg/ml increased IL-8 and TNF-α secretion from THP-1 cells by 2.5 and 1.8-fold respectively. Addition of MXF (5–20 μg/ml) inhibited the two cytokines secretion by 72–77% and 58–72%, respectively. The above combined data indicate that MXF, at clinically attainable concentrations, demonstrates pronounced synergistic effect with VP-16 as an anti-proliferative agent mainly by enhancing caspase-3 activity and apoptosis. At the same time MXF inhibits the pro-inflammatory effects conferred by VP-16 in the tumor cells studied. The clinical significance of the above anti-proliferative and anti-inflammatory effects of MXF in combination with VP-16 should be further investigated in animal models.


2009 ◽  
Vol 284 (52) ◽  
pp. 36191-36201 ◽  
Author(s):  
Christopher A. Koczor ◽  
Inna N. Shokolenko ◽  
Amy K. Boyd ◽  
Shawn P. Balk ◽  
Glenn L. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document