scholarly journals RNA recognition and self-association of CPEB4 is mediated by its tandem RRM domains

2014 ◽  
Vol 42 (15) ◽  
pp. 10185-10195 ◽  
Author(s):  
Constanze Schelhorn ◽  
James M.B. Gordon ◽  
Lidia Ruiz ◽  
Javier Alguacil ◽  
Enrique Pedroso ◽  
...  

Abstract Cytoplasmic polyadenylation is regulated by the interaction of the cytoplasmic polyadenylation element binding proteins (CPEB) with cytoplasmic polyadenylation element (CPE) containing mRNAs. The CPEB family comprises four paralogs, CPEB1–4, each composed of a variable N-terminal region, two RNA recognition motif (RRM) and a C-terminal ZZ-domain. We have characterized the RRM domains of CPEB4 and their binding properties using a combination of biochemical, biophysical and NMR techniques. Isothermal titration calorimetry, NMR and electrophoretic mobility shift assay experiments demonstrate that both the RRM domains are required for an optimal CPE interaction and the presence of either one or two adenosines in the two most commonly used consensus CPE motifs has little effect on the affinity of the interaction. Both the single RRM1 and the tandem RRM1–RRM2 have the ability to dimerize, although representing a minor population. Self-association does not affect the proteins’ ability to interact with RNA as demonstrated by ion mobility–mass spectrometry. Chemical shift effects measured by NMR of the apo forms of the RRM1–RRM2 samples indicate that the two domains are orientated toward each other. NMR titration experiments show that residues on the β-sheet surface on RRM1 and at the C-terminus of RRM2 are affected upon RNA binding. We propose a model of the CPEB4 RRM1–RRM2–CPE complex that illustrates the experimental data.

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Yinjiao Zhao ◽  
Ya Du ◽  
Qinglan Ge ◽  
Fang Yan ◽  
Shu Wei

Summary The Dazl (deleted in azoospermia-like) gene encodes an RNA-binding protein containing an RNA recognition motif (RRM) and a DAZ motif. Dazl is essential for gametogenesis in vertebrates. In this study, we report the cloning of Dazl cDNA from Cynops cyanurus. Ccdazl mRNA showed a germline-specific expression pattern as expected. Ccdazl expression gradually decreased during oogenesis, suggesting that it may be involved in oocyte development. Phylogenetic analysis revealed that the Ccdazl protein shares conserved motifs/domains with Dazl proteins from other species. Cloning of Ccdazl provides a new tool to carry out comparative studies of germ cell development in amphibians.


2018 ◽  
Vol 294 (5) ◽  
pp. 1529-1540 ◽  
Author(s):  
Stefano A. Marrella ◽  
Kerene A. Brown ◽  
Farnaz Mansouri-Noori ◽  
Jennifer Porat ◽  
Derek J. Wilson ◽  
...  

La proteins are RNA chaperones that perform various functions depending on distinct RNA-binding modes and their subcellular localization. In the nucleus, they help process UUU-3′OH–tailed nascent RNA polymerase III transcripts, such as pre-tRNAs, whereas in the cytoplasm they contribute to translation of poly(A)-tailed mRNAs. La accumulation in the nucleus and cytoplasm is controlled by several trafficking elements, including a canonical nuclear localization signal in the extreme C terminus and a nuclear retention element (NRE) in the RNA recognition motif 2 (RRM2) domain. Previous findings indicate that cytoplasmic export of La due to mutation of the NRE can be suppressed by mutations in RRM1, but the mechanism by which the RRM1 and RRM2 domains functionally cooperate is poorly understood. In this work, we use electromobility shift assays (EMSA) to show that mutations in the NRE and RRM1 affect binding of human La to pre-tRNAs but not UUU-3′OH or poly(A) sequences, and we present compensatory mutagenesis data supporting a direct interaction between the RRM1 and RRM2 domains. Moreover, we use collision-induced unfolding and time-resolved hydrogen–deuterium exchange MS analyses to study the conformational dynamics that occur when this interaction is intact or disrupted. Our results suggest that the intracellular distribution of La may be linked to its RNA-binding modes and provide the first evidence for a direct protein–protein interdomain interaction in La proteins.


2015 ◽  
Vol 35 (21) ◽  
pp. 3753-3767 ◽  
Author(s):  
Connor O'Sullivan ◽  
Jennifer Christie ◽  
Marcus Pienaar ◽  
Jake Gambling ◽  
Philip E. B. Nickerson ◽  
...  

ARS2 is a regulator of RNA polymerase II transcript processing through its role in the maturation of distinct nuclear cap-binding complex (CBC)-controlled RNA families. In this study, we examined ARS2 domain function in transcript processing. Structural modeling based on the plant ARS2 orthologue, SERRATE, revealed 2 previously uncharacterized domains in mammalian ARS2: an N-terminal domain of unknown function (DUF3546), which is also present in SERRATE, and an RNA recognition motif (RRM) that is present in metazoan ARS2 but not in plants. Both the DUF3546 and zinc finger domain (ZnF) were required for association with microRNA and replication-dependent histone mRNA. Mutations in the ZnF disrupted interaction with FLASH, a key component in histone pre-mRNA processing. Mutations targeting the Mid domain implicated it in DROSHA interaction and microRNA biogenesis. The unstructured C terminus was required for interaction with the CBC protein CBP20, while the RRM was required for cell cycle progression and for binding to FLASH. Together, our results support a bridging model in which ARS2 plays a central role in RNA recognition and processing through multiple protein and RNA interactions.


1998 ◽  
Vol 18 (2) ◽  
pp. 685-693 ◽  
Author(s):  
Laura E. Hake ◽  
Raul Mendez ◽  
Joel D. Richter

ABSTRACT CPEB is an RNA binding protein that interacts with the maturation-type cytoplasmic polyadenylation element (CPE) (consensus UUUUUAU) to promote polyadenylation and translational activation of maternal mRNAs in Xenopus laevis. CPEB, which is conserved from mammals to invertebrates, is composed of three regions: an amino-terminal portion with no obvious functional motif, two RNA recognition motifs (RRMs), and a cysteine-histidine region that is reminiscent of a zinc finger. In this study, we investigated the physical properties of CPEB required for RNA binding. CPEB can interact with RNA as a monomer, and phosphorylation, which modifies the protein during oocyte maturation, has little effect on RNA binding. Deletion mutations of CPEB have been overexpressed inEscherichia coli and used in a series of RNA gel shift experiments. Although a full-length and a truncated CPEB that lacks 139 amino-terminal amino acids bind CPE-containing RNA avidly, proteins that have had either RRM deleted bind RNA much less efficiently. CPEB that has had the cysteine-histidine region deleted has no detectable capacity to bind RNA. Single alanine substitutions of specific cysteine or histidine residues within this region also abolish RNA binding, pointing to the importance of this highly conserved domain of the protein. Chelation of metal ions by 1,10-phenanthroline inhibits the ability of CPEB to bind RNA; however, RNA binding is restored if the reaction is supplemented with zinc. CPEB also binds other metals such as cobalt and cadmium, but these destroy RNA binding. These data indicate that the RRMs and a zinc finger region of CPEB are essential for RNA binding.


2018 ◽  
Vol 115 (28) ◽  
pp. E6457-E6466 ◽  
Author(s):  
Catherine D. Eichhorn ◽  
Yuan Yang ◽  
Lucas Repeta ◽  
Juli Feigon

The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein–RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3′OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13C spin relaxation data and comparison of free xRRM, RNA, and xRRM–RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM–7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3′ end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.


1997 ◽  
Vol 110 (15) ◽  
pp. 1741-1750 ◽  
Author(s):  
H. Zinszner ◽  
J. Sok ◽  
D. Immanuel ◽  
Y. Yin ◽  
D. Ron

TLS, the product of a gene commonly translocated in liposarcomas (TLS), is prototypical of a newly identified class of nuclear proteins that contain a C-terminal domain with a distinct RNA recognition motif (RRM) surrounded by Arg-Gly-Gly (RGG) repeats. Its unique N terminus serves as an essential transforming domain for a number of fusion oncoproteins in human sarcomas and leukemias. In this study we use an in vivo UV crosslinking procedure to probe the interactions of TLS with RNA. TLS is found to bind RNA in vivo and the association of TLS with RNA is rapidly diminished by treating cells with transcriptional inhibitors. This suggests that the species bound by TLS turns over rapidly. Surprisingly, the RRM was found to be dispensable for RNA binding by TLS in vivo, suggesting that at any one time most of the interactions between TLS and RNA in the cell are not sequence specific. Analysis of inter specific heterokaryons formed between human and mouse or Xenopus cells revealed that TLS engages in rapid nucleocytoplasmic shuttling, a finding confirmed by the ability of anti-TLS antibodies to trap TLS when injected into the cytoplasm of HeLa cells. Cellular fractionation experiments suggest that TLS binds to RNA in both the nucleus and cytoplasm and support the hypothesis that TLS functions as a heterogeneous ribonuclear protein (hnRNP)-like chaperone of RNA. These findings are discussed in the context of the role altered forms of TLS play in cellular transformation.


2020 ◽  
Vol 48 (12) ◽  
pp. 6874-6888
Author(s):  
Giuseppa Grasso ◽  
Takuma Higuchi ◽  
Victor Mac ◽  
Jérôme Barbier ◽  
Marion Helsmoortel ◽  
...  

Abstract MicroRNAs (miRNAs) are predicted to regulate the expression of >60% of mammalian genes and play fundamental roles in most biological processes. Deregulation of miRNA expression is a hallmark of most cancers and further investigation of mechanisms controlling miRNA biogenesis is needed. The double stranded RNA-binding protein, NF90 has been shown to act as a competitor of Microprocessor for a limited number of primary miRNAs (pri-miRNAs). Here, we show that NF90 has a more widespread effect on pri-miRNA biogenesis than previously thought. Genome-wide approaches revealed that NF90 is associated with the stem region of 38 pri-miRNAs, in a manner that is largely exclusive of Microprocessor. Following loss of NF90, 22 NF90-bound pri-miRNAs showed increased abundance of mature miRNA products. NF90-targeted pri-miRNAs are highly stable, having a lower free energy and fewer mismatches compared to all pri-miRNAs. Mutations leading to less stable structures reduced NF90 binding while increasing pri-miRNA stability led to acquisition of NF90 association, as determined by RNA electrophoretic mobility shift assay (EMSA). NF90-bound and downregulated pri-miRNAs are embedded in introns of host genes and expression of several host genes is concomitantly reduced. These data suggest that NF90 controls the processing of a subset of highly stable, intronic miRNAs.


Author(s):  
Marianna Teplova ◽  
Thalia A. Farazi ◽  
Thomas Tuschl ◽  
Dinshaw J. Patel

AbstractRNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo.


1993 ◽  
Vol 13 (6) ◽  
pp. 3494-3504 ◽  
Author(s):  
T D Levine ◽  
F Gao ◽  
P H King ◽  
L G Andrews ◽  
J D Keene

We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.


Sign in / Sign up

Export Citation Format

Share Document