scholarly journals Divalent cations promote TALE DNA-binding specificity

2019 ◽  
Vol 48 (3) ◽  
pp. 1406-1422 ◽  
Author(s):  
Luke Cuculis ◽  
Chuankai Zhao ◽  
Zhanar Abil ◽  
Huimin Zhao ◽  
Diwakar Shukla ◽  
...  

Abstract Recent advances in gene editing have been enabled by programmable nucleases such as transcription activator-like effector nucleases (TALENs) and CRISPR–Cas9. However, several open questions remain regarding the molecular machinery in these systems, including fundamental search and binding behavior as well as role of off-target binding and specificity. In order to achieve efficient and specific cleavage at target sites, a high degree of target site discrimination must be demonstrated for gene editing applications. In this work, we studied the binding affinity and specificity for a series of TALE proteins under a variety of solution conditions using in vitro fluorescence methods and molecular dynamics (MD) simulations. Remarkably, we identified that TALEs demonstrate high sequence specificity only upon addition of small amounts of certain divalent cations (Mg2+, Ca2+). However, under purely monovalent salt conditions (K+, Na+), TALEs bind to specific and non-specific DNA with nearly equal affinity. Divalent cations preferentially bind to DNA over monovalent cations, which attenuates non-specific interactions between TALEs and DNA and further stabilizes specific interactions. Overall, these results uncover new mechanistic insights into the binding action of TALEs and further provide potential avenues for engineering and application of TALE- or TALEN-based systems for genome editing and regulation.

2019 ◽  
Vol 31 (1) ◽  
pp. 165
Author(s):  
M. Poirier ◽  
D. Miskel ◽  
F. Rings ◽  
K. Schellander ◽  
M. Hoelker

Successful genome editing of blastocysts using zygote microinjection with transcription activator-like effector nucleases has already been accomplished in cattle as well as a limited number of CRISPR-Cas9 microinjections of zygotes, mostly using RNA. Recent editing of the Pou5f1 gene in bovine blastocysts using CRISPR-Cas9, clarifying its role in embryo development, supports the viability of this technology to produce genome edited cattle founders. To further this aim, we hypothesise that editing of the coatomer subunit α (COPA) gene, a protein carrier associated with the dominant red coat colour phenotype in Holstein cattle, is feasible through zygote microinjection. Here, we report successful gene editing of COPA in cattle zygotes reaching the blastocyst stage, a necessary step in creating genome edited founder animals. A single guide RNA was designed to target the sixth exon of COPA. Presumptive zygotes derived from slaughterhouse oocytes by in vitro maturation and fertilization were microinjected either with the PX458 plasmid (Addgene #48138; n=585, 25ng µL−1) or with a ribonucleoprotein effector complex (n=705, 20, 50, 100, and 200ng µL−1) targeting the sixth exon of COPA. Plasmid injected zygotes were selected for green fluorescent protein (GFP) fluorescence at Day 8, whereas protein injected zygotes were selected within 24h post-injection based on ATTO-550 fluorescence. To assess gene editing rates, single Day 8 blastocysts were PCR amplified and screened using the T7 endonuclease assay. Positive structures were Sanger sequenced using bacterial cloning. For plasmid injected groups, the Day 8 blastocyst rate averaged 30.3% (control 18.1%). The fluorescence rate at Day 8 was 6.3%, with a GFP positive blastocyst rate of 1.6%, totaling 7 blastocysts. The T7 assay revealed editing in GFP negative blastocysts and morulae as well, indicating that GFP is not a precise selection tool for successful editing. In protein injection groups, the highest concentration yielded the lowest survival rates (200ng µL−1, 50.0%, n=126), whereas the lowest concentration had the highest survival rate (20ng µL−1, 79.5%, n=314). The Day 8 blastocyst rate reached an average of 25% across groups. However, no edited blastocysts were observed in the higher concentration groups (100,200ng µL−1). The highest number of edited embryos was found in the lowest concentration injected (20ng µL−1, 4/56). Edited embryos showed multiple editing events neighbouring the guide RNA target site ranging from a 12-bp insertion to a 9-bp deletion, as well as unedited sequences. Additionally, one embryo showed a biallelic 15-bp deletion of COPA (10 clones). One possible reason for the presence of only mosaic editing and this in-frame deletion could be that a working copy of COPA is needed for proper blastocyst formation and that a knockout could be lethal. Additional validation and optimization is needed to elucidate the functional role of COPA during early development and its modulation when creating founder animals.


Author(s):  
Emily Xia ◽  
Yiqian Zhang ◽  
Huibi Cao ◽  
Jun Li ◽  
Rongqi Duan ◽  
...  

Cystic Fibrosis (CF) is an inherited monogenic disorder, amenable to gene based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human CFTR minigene into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we have detected both CFTR mRNA and protein expression by qPCR and Wetern analysis, respectively. We have also confirmed CFTR function correction by flurometric Image Plate Reader (FLIPR) and iodide efflux assays. Taking together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 321
Author(s):  
Nieves García-Quintans ◽  
Laurie Bowden ◽  
José Berenguer ◽  
Mario Mencía

Background: The search for putative enzymes that can facilitate gene editing has recently focused its attention on Argonaute proteins from prokaryotes (pAgos). Though they are structural homologues of human Argonaute protein, which uses RNA guides to interfere with RNA targets, pAgos use ssDNA guides to identify and, in many cases, cut a complementary DNA target. Thermophilic pAgos from Thermus thermophilus, Pyrococcus furiosus and Methanocaldococcus jasmanii have been identified and thoroughly studied, but their thermoactivity makes them of little use in mesophilic systems such as mammalian cells. Methods: Here we search for and identify CbcAgo, a prokaryotic Argonaute protein from a mesophilic bacterium, and characterize in vitro its DNA interference activity. Results: CbcAgo efficiently uses 5’P-ssDNA guides as small as 11-mers to cut ssDNA targets, requires divalent cations (preferentially, Mn2+) and has a maximum activity between 37 and 42 °C, remaining active up to 55 °C. Nicking activity on supercoiled dsDNA was shown. However, no efficient double-strand breaking activity could be demonstrated. Conclusions: CbcAgo can use gDNA guides as small as 11 nucleotides long to cut complementary ssDNA targets at 37ºC, making it a promising starting point for the development of new gene editing tools  for mammalian cells.


2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Romains Joubert ◽  
Virginie Mariot ◽  
Marine Charpentier ◽  
Jean Paul Concordet ◽  
Julie Dumonceaux

Facioscapulohumeral dystrophy (FSHD, OMIM: 158900, 158901) is the most common dystrophy in adults and so far, there is no treatment. Different loci of the disease have been characterized and they all lead to the aberrant expression of the DUX4 protein, which impairs the function of the muscle, ultimately leading to cell death. Here, we used gene editing to try to permanently shut down DUX4 expression by targeting its poly(A) sequence. We used transcription activator-like effector nucleases (TALEN) and CRISPR-Cas9 nucleases in vitro on FSHD myoblasts. More than 150 TOPO clones were sequenced and only indels were observed in 4%. Importantly, in 2 of them, the DUX4 poly(A) signal was eliminated at the genomic level but DUX4 mRNA was still produced thanks to the use of a non-canonical upstream poly(A) signal sequence. These experiments show that targeting DUX4 PAS at the genomic level might not be an appropriate gene editing strategy for FSHD therapy.


2020 ◽  
Vol 9 (8) ◽  
pp. 2577 ◽  
Author(s):  
Lucía Bañuls ◽  
Daniel Pellicer ◽  
Silvia Castillo ◽  
María Mercedes Navarro-García ◽  
María Magallón ◽  
...  

Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions—cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)—alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.


2016 ◽  
Vol 28 (2) ◽  
pp. 253
Author(s):  
R. J. Bevacqua ◽  
R. Fernandez-Martín ◽  
V. Savy ◽  
N. G. Canel ◽  
M. I. Gismondi ◽  
...  

The rapid introduction of engineered nucleases technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR), provides new opportunities for editing genes in a targeted and rather simple fashion. Few reports are available regarding CRISPR efficiency in domestic species. Here, the CRISPR/Cas9 system was employed to develop knockout and knock-in alleles of the bovine PRNP gene, responsible for bovine spongiform encephalopathy (mad cow disease), both in bovine fetal fibroblasts and in IVF embryos. Five sgRNAs were designed to target a 875-bp region within prnp exon 3; all 5 were co-delivered with hCas9 and a homologous recombination vector carrying gfp (pHRegfp). For cells, 3 transfection conditions were compared: 2 μg of hCas9 + 1 μg of sgRNAs mix ± 2 μg pHREGFP (1X) versus 4 μg of hCas9 + 2 μg of sgRNAs mix ± 4 μg of pHREGFP (2X). For IVF zygotes, cytoplasmic injection was conducted with 2 RNA concentrations: (a) 50 ng μL–1 hCas9 RNA + 25 ng μL–1 sgRNAs mix (RNA1X), ±50 ng μL–1 pHREGFP, and (b) 100 ng μL–1 hCas9 + 50 ng μL–1 sgRNAs mix (RNA2X), ±100 ng μL–1 pHREGFP, which were compared with plasmid injections with 100 ng μL–1 pCMVCas9 + 50 ng μL–1 pU6sgRNAs mix (DNA2X), ±100 ng μL–1 pHREGFP. The pHREGFP was always injected as plasmid, under the same conditions as hCas9. DNA from cells was subjected to PCR, Surveyor assay, and sequence analysis. Embryo analysis was conducted on whole-genome-amplified DNA from blastocysts, followed by PCR assays and sequencing. In cells, 2X transfection resulted in indels and amplification of PCR products of lower MW than the wild-type, indicative of the deletion of a part of the targeted PRNP region. However, it was not possible to detect an effect for 1X transfection. For the group transfected with pHREGFP, insertion of a partial EGFP sequence was detected (383 bp). Regarding embryo injection, higher blastocyst rates were obtained in all groups injected with RNA (Table 1). In 48% (21/43) of the sequenced blastocysts specific gene editing was detected (Table 1). Modifications varied among single base pair shift (3/43; 7%), high level of mismatches all over the targeted sequence and vicinity (12/43; 27.9%), full deletion of the 875-bp region (1/43; 2.3%), and partial insertion of 100–498 bp pHREGFP fragments between the HR arms (5/24; 20.8%). Most of these modifications occurred in a mosaic fashion (76%). Results demonstrate that CRISPR/Cas can be efficiently applied for site-specific edition of domestic species genomes. Table 1.In vitro development and gene editing efficiency of embryos injected with plasmids or RNA coding for CRISPR/Cas9 system targeting PRNP


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 321
Author(s):  
Nieves García-Quintans ◽  
Laurie Bowden ◽  
José Berenguer ◽  
Mario Mencía

Background: The search for putative enzymes that can facilitate gene editing has recently focused its attention on Argonaute proteins from prokaryotes (pAgos). Though they are structural homologues of human Argonaute protein, which uses RNA guides to interfere with RNA targets, pAgos use ssDNA guides to identify and, in many cases, cut a complementary DNA target. Thermophilic pAgos from Thermus thermophilus, Pyrococcus furiosus and Methanocaldococcus jasmanii have been identified and thoroughly studied, but their thermoactivity makes them of little use in mesophilic systems such as mammalian cells. Methods: Here we search for and identify CbcAgo, a prokaryotic Argonaute protein from a mesophilic bacterium, and characterize in vitro its DNA interference activity. Results: CbcAgo efficiently uses 5’P-ssDNA guides as small as 11-mers to cut ssDNA targets, requires divalent cations (preferentially, Mn2+) and has a maximum activity between 37 and 42 °C, remaining active up to 55 °C. Nicking activity on supercoiled dsDNA was shown. However, no efficient double-strand breaking activity could be demonstrated. Conclusions: CbcAgo can use gDNA guides as small as 11 nucleotides long to cut complementary ssDNA targets at 37ºC, making it a promising starting point for the development of new gene editing tools  for mammalian cells.


2019 ◽  
Vol 16 (4) ◽  
pp. 307-313 ◽  
Author(s):  
Nasrin Zarkar ◽  
Mohammad Ali Nasiri Khalili ◽  
Fathollah Ahmadpour ◽  
Sirus Khodadadi ◽  
Mehdi Zeinoddini

Background: DAB389IL-2 (Denileukin diftitox) as an immunotoxin is a targeted pharmaceutical protein and is the first immunotoxin approved by FDA. It is used for the treatment of various kinds of cancer such as CTCL lymphoma, melanoma, and Leukemia but among all of these, treatment of CTCL has special importance. DAB389IL-2 consists of two distinct parts; the catalytic domain of Diphtheria Toxin (DT) that genetically fused to the whole IL-2. Deamidation is the most important reaction for chemical instability of proteins occurs during manufacture and storage. Deamidation of asparagine residues occurs at a higher rate than glutamine residues. The structure of proteins, temperature and pH are the most important factors that influence the rate of deamidation. Methods: Since there is not any information about deamidation of DAB389IL-2, we studied in silico deamidation by Molecular Dynamic (MD) simulations using GROMACS software. The 3D model of fusion protein DAB389IL-2 was used as a template for deamidation. Then, the stability of deamidated and native form of the drug was calculated. Results: The results of MD simulations were showed that the deamidated form of DAB389IL-2 is more unstable than the normal form. Also, deamidation was carried by incubating DAB389IL-2, 0.3 mg/ml in ammonium hydrogen carbonate for 24 h at 37o C in order to in vitro experiment. Conclusion: The results of in vitro experiment were confirmed outcomes of in silico study. In silico and in vitro experiments were demonstrated that DAB389IL-2 is unstable in deamidated form.


2019 ◽  
Vol 16 (3) ◽  
pp. 291-300
Author(s):  
Saumya K. Patel ◽  
Mohd Athar ◽  
Prakash C. Jha ◽  
Vijay M. Khedkar ◽  
Yogesh Jasrai ◽  
...  

Background: Combined in-silico and in-vitro approaches were adopted to investigate the antiplasmodial activity of Catharanthus roseus and Tylophora indica plant extracts as well as their isolated components (vinblastine, vincristine and tylophorine). </P><P> Methods: We employed molecular docking to prioritize phytochemicals from a library of 26 compounds against Plasmodium falciparum multidrug-resistance protein 1 (PfMDR1). Furthermore, Molecular Dynamics (MD) simulations were performed for a duration of 10 ns to estimate the dynamical structural integrity of ligand-receptor complexes. </P><P> Results: The retrieved bioactive compounds viz. tylophorine, vinblastin and vincristine were found to exhibit significant interacting behaviour; as validated by in-vitro studies on chloroquine sensitive (3D7) as well as chloroquine resistant (RKL9) strain. Moreover, they also displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations. </P><P> Conclusion: We anticipate that the retrieved phytochemicals can serve as the potential hits and presented findings would be helpful for the designing of malarial therapeutics.


2020 ◽  
Vol 20 (15) ◽  
pp. 1857-1872
Author(s):  
Alberto M. Muñoz ◽  
Manuel J. Fragoso-Vázquez ◽  
Berenice P. Martel ◽  
Alma Chávez-Blanco ◽  
Alfonso Dueñas-González ◽  
...  

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed. Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


Sign in / Sign up

Export Citation Format

Share Document