scholarly journals P1143REDOX PROFILING IN MESOTHELIAL CELLS IN EXPERIMENTAL PERITONEAL DIALYSIS

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Rebecca Herzog ◽  
Anja Wagner ◽  
Klaus Kratochwill

Abstract Background and Aims PD-fluids lead to generation of reactive oxygen species (ROS) in the peritoneal cavity. The caused oxidative stress, defined as a cellular oxidant-antioxidant imbalance impairs not only peritoneal cell viability but also contributes to progression of local and systemic PD-related pathomechanisms. We aim to analyze the impact and specific targets of ROS during PD and the anti-oxidative mechanism of supplementation of PD-fluid with alanyl-glutamine (AlaGln) on a global proteome-wide level. Method To establish a redox-proteomics workflow for studying oxidative stress in peritoneal mesothelial cells we used a gold-standard model of redox-stress (H2O2) and PD-fluid induced stress. Levels of oxidative stress were first validated by increased intracellular ROS and superoxide dismutase activity with PD-fluid and H2O2 treatment and a reduction of these parameters by the addition of AlaGln. To detect alterations of the redox proteome, cysteine residues were either directly or indirectly labeled with fluorescent dyes (redox-2D-DiGE) or isobaric tags (iodo-TMT). Results: The gel-based approach allowed global visualization of the reduced and oxidized cysteines and revealed redox profiles of 540 protein spots. Compared to control, we found an increase in oxidized and decrease in reduced cysteines in all PD treatments. The development of a highly sensitive LC/MS-based redox proteomics workflow allowed identification of ∼950 proteins affected by redox-stress in mesothelial cells and confirmed the quantitative levels seen on cysteine oxidation. The addition of AlaGln reduced the overall redox status (intracellular ROS and superoxide dismutase activity) but further showed different proteins to be affected by redox modifications. Conclusion: Redox proteomics of peritoneal cells could represent a novel approach for the identification of mediators of PD-induced pathomechanisms, but also to evaluate effects of novel anti-oxidant therapeutical or pharmacological interventions.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Rebecca Herzog ◽  
Anja Wagner ◽  
Klaus Kratochwill

Abstract Background and Aims Reactive oxygen species (ROS) in the peritoneal cavity may result both from CKD and the specific composition of peritoneal dialysis fluids (PDF). Elevated cellular oxidative stress is defined as a cellular oxidant/antioxidant imbalance which impairs not only peritoneal cell viability but also contributes to progression of local and systemic PD-related pathomechanisms. So far only single targets or mediators of oxidative stress were investigated in mesothelial cells exposed to PD fluids. Here, we aim to analyze the broad impact and also identify individual targets of ROS during PD. Using the developed technique the anti-oxidative effect of alanyl-glutamine (AlaGln) supplementation of PDF was characterized on the proteome level. Method To establish a redox-proteomics workflow for studying oxidative stress in peritoneal mesothelial cells we used a gold-standard model of redox-stress (100 µm hydrogen peroxide (H2O2)) and PD-fluid induced stress. Levels of oxidative stress were first evaluated by intracellular ROS levels and superoxide dismutase activity. Oxidative stress levels induced by PDF were titrated to comparable levels of H2O2 treatment to be able to characterize redox modifications and the effect of addition of 8 mM AlaGln. To detect alterations of the redox proteome we adapted and refined an approach combining redox-sensitive isobaric mass tags and high-performance liquid chromatography coupled to mass spectrometry (LC/MS). We used a sequential combination of direct and indirect labeling of redox-sensitive cysteine residues. Results Exposure to PDF increased intracellular ROS production and accumulation as well as cell damage assessed by LDH-release compared to control cells. Cells exposed to AlaGln supplemented PDF showed less cell damage compared to PDF alone. Addition of AlaGln not only reduced the overall redox status (intracellular ROS and superoxide dismutase activity) but also led to different proteins being affected by redox modifications. The carefully optimized highly sensitive LC/MS-based redox proteomics workflow allowed identification of 5537 proteins of which 2614 contained a labeled cysteine. H2O2 treatment resulted in a shift of median oxidation from 11% under control conditions to 36%. While PDF alone increased the oxidation level to 31%, AlaGln supplemented PDF only led to 15% oxidation. Pathway analysis of proteins that changed their oxidation level >50% following the treatment were subjected to molecular pathway analysis revealing distinct differences. PDF exposure leads to regulation of general cell processes like regulation of glucokinase, RNA-binding and SUMOylation, addition of AlaGln regulated more specific signaling pathways for example fibrosis related pathways like TGF-ß and SMAD signaling. Conclusion Redox proteomics of peritoneal cells could represent a novel tool for the identification of mediators of uraemia and PD-induced pathomechanisms, and also to evaluate anti-oxidant pharmacological interventions to improve PD outcomes.


2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


2020 ◽  
Vol 13 (1) ◽  
pp. 76-83
Author(s):  
Aline Maria Brito Lucas ◽  
Joana Varlla de Lacerda Alexandre ◽  
Maria Thalyne Silva Araújo ◽  
Cicera Edna Barbosa David ◽  
Yuana Ivia Ponte Viana ◽  
...  

Background: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell. Objective: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy. Methods: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers. Results: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress. Conclusion: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.


2016 ◽  
pp. 75-78
Author(s):  
Liliia Babynets ◽  
Tetiana Maevska

The study proved that patients with combined progress of osteoarthritis and chronic pancreatitis have reliable top-level activation of lipid peroxidation in terms of malonyc aldehyde and tissue destruction in terms of oxyproline, weakening of the antioxidant level (in terms of superoxide dismutase and SH-groups) and activation parameters of catalase and ceruloplasmin (p<0,05). The authentic predictority of patients biological age, duration of combined clinical courses, the functional capacity of the pancreas in terms of fecal α-elastase, structural state by ultrasound criteria for progression effects of oxidative stress, accumulation oxyproline activation parameters catalase and ceruloplasmin, which statistically was reflected by the presence of mainly moderate of significant correlations between these groups of indicators have been identified.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Agata Stanek ◽  
Armand Cholewka ◽  
Tomasz Wielkoszyński ◽  
Ewa Romuk ◽  
Aleksander Sieroń

Objective. The aim of the study was to estimate the impact of whole body cryotherapy (WBC) on oxidative stress when performed in a closed cryochamber on patients with ankylosing spondylitis (AS). Material and methods. The effect of ten WBC procedures lasting 3 minutes a day with a subsequent 60-minute session kinesiotherapy on oxidative stress in male AS patients (WBC group n=16) was investigated. To assess the disease activity, the Bath Ankylosing Spondylitis Diseases Activity Index (BASDAI) and Bath Ankylosing Spondylitis Functional Index (BASFI) were calculated. The WBC group was compared to the kinesiotherapy only (KT; n=16) group. The routine parameters of oxidative stress (antioxidant enzymatic and nonenzymatic antioxidant status, lipid peroxidation products, total oxidative status (TOS), and oxidative stress index (OSI)) were estimated one day before the beginning and one day after the completion of the research program. Results. After the completion of the treatment in the WBC group, a significant decrease of oxidative stress markers (TOS and OSI) and a significant increase of total antioxidant status were observed. The erythrocyte activity of glutathione peroxidase, glutathione reductase decreased significantly in both groups, but the differences of activity of that enzymes prior to post treatment values (Δ) in the KT group were significantly higher as compared to the WBC group. The activity of erythrocyte catalase and plasma ZnCu isoenzyme of superoxide dismutase showed a decreased tendency; erythrocyte total superoxide dismutase activity showed an increased tendency in the WBC group after the completion of the treatment. The BASDAI and BASFI decreased significantly in both groups, but the differences of value indexes prior to post treatment (Δ) were significantly higher in the WBC than KT group. Conclusion. WBC performed in a closed cryochamber decreases oxidative stress and improves BASDAI and BASFI indexes in male patients during the active phase of ankylosing spondylitis.


1999 ◽  
Vol 86 (6) ◽  
pp. 1823-1827 ◽  
Author(s):  
A. A. Azenabor ◽  
L. Hoffman-Goetz

Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after ( t 0) or 24 h after ( t 24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus ( P < 0.001) and spleen ( P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 ± 0.80 μM; t 0 = 7.45 ± 0.48 μM; t 24 = 9.44 ±1.41 μM; spleen: C = 0.48 ± 0.22 μM; t 0 = 1.78 ± 0.28 μM; t 24 = 2.81 ± 0.34 μM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t 0 relative to C and t 24 mice ( P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations ( P < 0.001); the reduction in plasma AA occurred at t 24 (6.53 ± 1.64 μM) relative to t 0 (13.11 ± 0.71 μM) and C (13.26 ± 1.2 μM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 948
Author(s):  
Milena Ściskalska ◽  
Monika Ołdakowska ◽  
Grzegorz Marek ◽  
Halina Milnerowicz

This study was aimed at evaluating the changes in the concentration and activity of all superoxide dismutase isoenzymes (SOD1, SOD2, SOD3) in the blood of patients with acute pancreatitis (AP) and healthy subjects, taking into account the extracellular (plasma) and intracellular (erythrocyte lysate) compartment. The relationships between the activity/concentration of SODs, metal concentration and the markers of inflammation were evaluated. To assess the pro/antioxidative imbalance, the malonyldialdehyde (MDA) concentration and the value of total antioxidant capacity (TAC) were measured. The impact of single-nucleotide polymorphism (SNP) in the SOD1 gene (rs2070424) on the activity/concentration of SOD1 as the main isoenzyme of the SOD family was also analyzed in this study. The SOD2 activity in erythrocytes was increased compared to plasma: 10-fold in the AP patient group and 5-fold in healthy subjects. The plasma of AP patients showed an increased SOD1 concentration and decreased SOD2 and SOD3 concentrations compared to healthy subjects. The Cu/Zn SOD (SOD1 + SOD3) concentration in plasma of AP patients was elevated compared to healthy subjects, but changes in plasma Cu/Zn SOD (SOD1 + SOD3) activity in the examined groups were not observed. An influence of SNP rs2070424 in the SOD1 gene on the total activity of SOD in AP patients (with AG genotype), accompanied by an increased IL-6 concentration, was observed. In oxidative stress conditions induced by inflammation, the participation of individual forms of plasma SOD isoenzymes in total antioxidative activity of SOD changed. A significant increase in the intracellular SOD1 concentration in plasma of AP patients proves the important role of this isoenzyme in the neutralization of oxidative stress induced by impaired Cu and Zn homeostasis. The presence of increased concentration of SOD2 in erythrocytes of healthy subjects and AP patients confirms the important function of this isoenzyme in the antioxidative defense.


1997 ◽  
Vol 17 (5) ◽  
pp. 455-466 ◽  
Author(s):  
Jinn-Yang Chen ◽  
An-Hang Yang ◽  
Yao-Ping Lin ◽  
Jen-Kou Lin ◽  
Wu-Chang Yang ◽  
...  

Objective To investigate the modulation of superoxide dismutase, glutathione peroxidase, and catalase by cytokines and endotoxin in human peritoneal mesothelial cells. Design Cultured human peritoneal mesothelial cells were treated with various concentrations of interleu kin-1 α, tumor necrosis factor-α(TNFα), interleukin-6, interleukin-8, transforming growth factor-β (TGFβ), and lipopolysaccharide. Cell morphology was observed and the activities of superoxide dismutase, catalase, and glutathione peroxidase were assayed. The antioxidant enzyme activities of human peritoneal mesothelial cells were also compared with those of human liver and kidney tissues. Results Interleukin-1α, TNFα, TGFβ, and lipopolysaccharide caused dose-dependent cytotoxicities in mesothelial cells. The activities of these three antioxidant enzymes did not change after treatment with cytokines and endotoxin. The total superoxide dismutase activity of confluent human peritoneal mesothelial cells was found to be greater than that of human liver and kidney tissues and was composed mostly of manganese superoxide dismutase activity. Furthermore, glutathione peroxidase and catalase activities of human peritoneal mesothelial cells were lower than those of human liver and kidney tissues. Conclusion In human peritoneal mesothelial cells, lack of induction of antioxidant enzymes by inflammatory cytokines, as well as high superoxide dismutase activity accompanied by insufficient glutathione peroxidase and catalase activities may both contribute to the susceptibility of these cells to oxidative damage. Therefore, appropriate management to decrease oxidative injury to the peritoneum should be taken into consideration when treating long-term continuous ambulatory peritoneal dialysis patients.


Sign in / Sign up

Export Citation Format

Share Document