DDRE-19. SPHINGOSINE KINASE 1 AS A THERAPEUTIC TARGET FOR IDH1-R132H mut GLIOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi78-vi78
Author(s):  
Tyrone Dowdy ◽  
Tomohiro Yamasaki ◽  
Lumin Zhang ◽  
Orieta Celiku ◽  
Adrian Lita ◽  
...  

Abstract BACKGROUND Our study aimed to identify vulnerabilities within sphingolipid metabolism with potential to translate to therapeutics. While the vital role of sphingolipids in maintaining rheostat balance and as secondary messengers for signaling pathways (involving proliferation, invasion, migration, and angiogenesis) has been well-documented, their role has not been widely investigated in gliomas. Therefore, metabolic analysis of sphingolipid pathway for IDH1-R132H (IDH1 mut ) glioma cell lines was conducted in order to elucidate susceptible targets. METHODS Global sphingolipid quantification utilized high-throughput LCMS analysis. Pathway protein expression was measured via Western blots in vitro and derived from patients using The Cancer Genome Atlas analysis. RESULTS We probed the impact of decreasing D-2HG on the sphingolipid metabolism after treating a panel of IDH1 mut glioma cells with IDH1-R132H mut inhibitor, AGI5198. This revealed significant downregulation of N,N-dimethylsphingosine (NDMS), C17-sphingosine, and C18-sphinganine. Coincidentally, sphingosine-1-phosphate (S1P) was significantly upregulated in these gliomas. We conducted rational drug screen which revealed that inhibition of SPHK1 with N,N-dimethylsphingosine in combination with C17-sphingosine triggered biostatic dose-response across IDH1 mut gliomas and low impact on IDH WT glioblastoma (GBM) cells. Western analysis revealed that the IDH1 mut gliomas and IDH WT GBM expressed sphingosine kinase-1 (SPHK1). Data also unveiled a discovery that SPHK2 was highly expressed in the GBM cells while remarkably absent in the glioma cells. CONCLUSION Herein, we provide evidence that certain IDH1 mut gliomas present epigenetic silencing of SPHK2 which creates dependency on SPHK1 for S1P; thus, increasing sensitivity to targeting sphingolipid metabolism, and creating susceptibility to proliferation arrest and subsequent cellular death. S1P production has been reported to be elevated particularly for malignant glioblastomas in prior studies; whereas our research revealed that it is relatively low in IDH mut by comparison with IDH WT tumor cells. These findings suggest targeting the sphingolipid metabolism may present a promising strategy to improve survival for patients diagnosed with IDH1 mut gliomas.

2021 ◽  
Vol 22 (7) ◽  
pp. 3616
Author(s):  
Ewelina Jozefczuk ◽  
Piotr Szczepaniak ◽  
Tomasz Jan Guzik ◽  
Mateusz Siedlinski

Sphingosine kinase-1 (Sphk1) and its product, sphingosine-1-phosphate (S1P) are important regulators of cardiac growth and function. Numerous studies have reported that Sphk1/S1P signaling is essential for embryonic cardiac development and promotes pathological cardiac hypertrophy in adulthood. However, no studies have addressed the role of Sphk1 in postnatal cardiomyocyte (CM) development so far. The present study aimed to assess the molecular mechanism(s) by which Sphk1 silencing might influence CMs development and hypertrophy in vitro. Neonatal mouse CMs were transfected with siRNA against Sphk1 or negative control, and subsequently treated with 1 µM angiotensin II (AngII) or a control buffer for 24 h. The results of RNASeq analysis revealed that diminished expression of Sphk1 significantly accelerated neonatal CM maturation by inhibiting cell proliferation and inducing developmental pathways in the stress (AngII-induced) conditions. Importantly, similar effects were observed in the control conditions. Enhanced maturation of Sphk1-lacking CMs was further confirmed by the upregulation of the physiological hypertrophy-related signaling pathway involving Akt and downstream glycogen synthase kinase 3 beta (Gsk3β) downregulation. In summary, we demonstrated that the Sphk1 silencing in neonatal mouse CMs facilitated their postnatal maturation in both physiological and stress conditions.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-216469
Author(s):  
Alison W Ha ◽  
Tao Bai ◽  
David L Ebenezer ◽  
Tanvi Sethi ◽  
Tara Sudhadevi ◽  
...  

IntroductionNeonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD.MethodThe enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1−/− and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs).ResultsBoth SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1−/− and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression.ConclusionHO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.


2021 ◽  
Author(s):  
Yanqiu Zhang ◽  
Yue Li ◽  
Yuhua Fan ◽  
Baoshan Zhao ◽  
Huan Liang ◽  
...  

Abstract Background: Glioma is a fatal malignancy caused by dysregulation of cellular signal transduction. Internalization plays a key role in maintaining signalling balance. SorCS3 is involved in nerve cell receptor internalization. However, the impact of SorCS3 on the biological processes involved in glioma has not yet been reported. Here, we highlight the potential of SorCS3-mediated regulation of signalling receptor internalization as a rational target for therapeutic intervention in glioma.Methods: SorCS3 expression was analysed in the TCGA and CGGA databases and in tissue microarrays. The effects of SorCS3 on the proliferation and metastasis of glioma cells were examined in vitro and in vivo with Transwell, wound healing, EdU incorporation and nude mouse tumorigenicity assays. Fluorescent 5-FAM, SE-labelled proteins were used to detect the internalization of SorCS3 in glioma cells. Immunofluorescence and Co-IP assays were conducted to investigate the downstream effector of SorCS3. Moreover, Dynasore and Ro 08-2750, inhibitors of internalization and NGF binding to p75NTR, respectively, were used to validate the biological functions of SorCS3 in glioma.Results: Our data demonstrated that SorCS3 was downregulated in glioma tissues and closely related to favourable prognosis. Overexpression of SorCS3 inhibited the proliferation and metastasis of glioma cells in vitro and in vivo, while silencing of SorCS3 exerted the opposite effects. Mechanistic investigations showed that SorCS3 bound to p75NTR, which subsequently increased the internalization of p75NTR, and then transported p75NTR to the lysosome for degradation, ultimately contributing to inhibition of glioma progression.Conclusions: Our work suggests that SorSC3 is a marker of promising prognosis in glioma patients and suggests that SorCS3 regulates internalization, which plays an important role in inhibiting glioma progression.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Xie ◽  
Yong Shao ◽  
Jin Liu ◽  
Meilan Cui ◽  
Xiuxiao Xiao ◽  
...  

AbstractObesity and its associated metabolic disorders are increasingly impacting public health worldwide. Sphingosine kinase 1 (Sphk1) is a critical enzyme in sphingolipid metabolism that has been implicated in various metabolic syndromes. In this study, we developed a mouse model constitutively expressing pseudoacetylated mouse Sphk1 (QSPHK1) to study its role in regulating glucose and lipid metabolism. The results showed that QSPHK1 mice gained less body weight than wide type (WT) mice on a high-fat diet, and QSPHK1 mice had improved glucolipid metabolism and insulin. Moreover, QSPHK1 mice had alleviated hepatic triglyceride accumulation and had high-fat-diet-induced hepatic steatosis that occurred as a result of reduced lipogenesis and enhanced fatty acid oxidation, which were mediated by the AMPK/ACC axis and the FGF21/adiponectin axis. Collectively, this study provided evidence that the K27Q/K29Q mutations of Sphk1 could have a protective role in preventing obesity and the related metabolic diseases. Hence, our results contribute to further understanding of the biological functions of Sphk1, which has great pharmaceutical implications.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 192 ◽  
Author(s):  
Yuli Yan ◽  
Xingyu Liu ◽  
Jie Gao ◽  
Yin Wu ◽  
Yuxin Li

Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 20044-20044
Author(s):  
W. Wick ◽  
G. Tabatabai ◽  
B. Frank ◽  
M. Weller

20044 Background: Temozolomide and irradiation are essential parts of the standard therapy and hypoxia is a critical aspect of the microenvironment of gliomas. IN the present study, we aimed at investigating the impact of these stimuli on the previously defined transforming growth factor beta (TGF-β)- and stromal cell-derived factor-1/CXC chemokine ligand 12 (SDF-1α/CXCL12)-dependent migration of adult hematopoietic stem and progenitor cells (HPC) towards glioma cells in vitro and the homing to experimental gliomas in vivo. Hyperthermia served as control. Methods and Results: Cerebral irradiation of nude mice at 21 days after intracerebral implantation of LNT-229 glioma induces tumor satellite formation and enhances the glioma tropism of HPC in vivo. Supernatants of temozolomide-treated, irradiated or hypoxic LNT-229 glioma cells promote HPC migration in vitro. Reporter assays reveal that the CXCL12 promoter activity is enhanced in LNT-229 glioma cells at 24 h after irradiation at 8 Gy or after exposure to 1% oxygen for 12 h. The irradiation- and hypoxia-induced release of CXCL12 depends on hypoxia inducible factor-1 alpha (HIF-1α), but not on p53. Induction of transcriptional activity of HIF-1α by hypoxia and irradiation requires an intact signaling cascade of TGF-β. Conclusions: Thus, we delineate a novel stress signaling cascade in glioma cells involving TGF-β, HIF-1α and CXCL12. Stress stimuli can be temozolomide, irradiation and hypoxia but not hyperthermia. These data suggest that the use of HPC as cellular vectors in the treatment of glioblastoma may well be combined with anti-angiogenic therapies which induce tumor hypoxia. [Table: see text]


2010 ◽  
Vol 24 (8) ◽  
pp. 2727-2738 ◽  
Author(s):  
Viviana Anelli ◽  
Christopher R. Gault ◽  
Ashley J. Snider ◽  
Lina M. Obeid

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaolong Zhu ◽  
Hui Yang ◽  
Mengying Zhang ◽  
Xingwei Wu ◽  
Lan Jiang ◽  
...  

Abstract Background Glioma is a common type of malignant brain tumor with a high mortality and relapse rate. The endosomal sorting complex required for transport (ESCRT) has been reported to be involved in tumorigenesis. However, the molecular mechanisms have not been clarified. Methods Bioinformatics was used to screen the ESCRT subunits highly expressed in glioma tissues from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The function of the ESCRT subunits in glioma cells was examined in vitro. Transcriptome sequencing analyzed the target genes and signaling pathways affected by the ESCRT subunit. Finally, the relationship between m6A (N6-methyladenosine) modification and high expression of the ESCRT subunit was studied. Results VPS25 was upregulated in glioma tissues, which was correlated with poor prognosis in glioma patients. Furthermore, VPS25 knockdown inhibited the proliferation, blocked the cell cycle, and promoted apoptosis in glioma cells. Meanwhile, VPS25 induced a G0/G1 phase arrest of the cell cycle in glioma cells by directly mediating p21, CDK2, and cyclin E expression, and JAK-signal transducer and activator of transcription (STAT) activation. Finally, YTHDC1 inhibited glioma proliferation by reducing the expression of VPS25. Conclusion These results suggest that VPS25 is a promising prognostic indicator and a potential therapeutic target for glioma.


2020 ◽  
Vol 21 (4) ◽  
pp. 1188 ◽  
Author(s):  
Yohei Tomita ◽  
Zhongjie Fu ◽  
Zhongxiao Wang ◽  
Bertan Cakir ◽  
Steve S. Cho ◽  
...  

The aim of the current study was to investigate the impact of long-acting fibroblast growth factor 21 (FGF21) on retinal vascular leakage utilizing machine learning and to clarify the mechanism underlying the protection. To assess the effect on retinal vascular leakage, C57BL/6J mice were pre-treated with long-acting FGF21 analog or vehicle (Phosphate Buffered Saline; PBS) intraperitoneally (i.p.) before induction of retinal vascular leakage with intravitreal injection of mouse (m) vascular endothelial growth factor 164 (VEGF164) or PBS control. Five hours after mVEGF164 injection, we retro-orbitally injected Fluorescein isothiocyanate (FITC) -dextran and quantified fluorescence intensity as a readout of vascular leakage, using the Image Analysis Module with a machine learning algorithm. In FGF21- or vehicle-treated primary human retinal microvascular endothelial cells (HRMECs), cell permeability was induced with human (h) VEGF165 and evaluated using FITC-dextran and trans-endothelial electrical resistance (TEER). Western blots for tight junction markers were performed. Retinal vascular leakage in vivo was reduced in the FGF21 versus vehicle- treated mice. In HRMECs in vitro, FGF21 versus vehicle prevented hVEGF-induced increase in cell permeability, identified with FITC-dextran. FGF21 significantly preserved TEER compared to hVEGF. Taken together, FGF21 regulates permeability through tight junctions; in particular, FGF21 increases Claudin-1 protein levels in hVEGF-induced HRMECs. Long-acting FGF21 may help reduce retinal vascular leakage in retinal disorders and machine learning assessment can help to standardize vascular leakage quantification.


Sign in / Sign up

Export Citation Format

Share Document