DDRE-45. HIGH-THROUGHPUT SCREENING OF EPIGENETIC COMPOUNDS FOR THE TREATMENT OF CHORDOMA IDENTIFIES POTENTIAL NOVEL THERAPEUTICS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi84-vi84
Author(s):  
Tadeusz Wroblewski ◽  
Philip Tatman ◽  
Anthony Fringuello ◽  
Sam Scherer ◽  
William Foreman ◽  
...  

Abstract BACKGROUND Chordoma is a rare malignant tumor with few treatment options. While surgical resection is deemed the most effective treatment, the 5-year overall survival rate is 61% and 5-year recurrence free survival rate is approximately 50%. To date, no FDA approved pharmacotherapies exist for the treatment of chordoma, and adjuvant therapy remains highly debated. This necessitates the need for further research to provide clinicians with more options to treat this patient population. METHODS In this study, we conducted a high-throughput 139-compound epigenetic inhibitor screen against 12 chordoma patient-derived cell lines; 4 were resected at our institution and 8 were graciously donated by the Chordoma Foundation. RESULTS 8 tumors were located in the sacrum, 3 were located in the mobile spine, and 1 tumor was located in the clivus. 5 tumors were primary, 5 were recurrent, and 2 were metastatic. 6 tumors came from female patients and 6 tumors came from male patients. The top three most effect compounds across the cohort were the G9a inhibitor UNC0631 (cell viability = 64.5% +/-25.1SD; p=1.53x10-9), the KDM inhibitor JIB-04 (cell viability = 68.4% +/-27.2SD; p=9.81x10-8), and the G9a inhibitor BIX01294 (cell viability = 68.6% +/-27.9SD; p=1.27x10-7). No single compound significantly reduced viability in every tumor in the cohort, although the HDAC inhibitor HC Toxin significantly reduced viability in 9 tumors (cell viability = 69.7% +/-16.6SD; p=2.6x10-12). The most effective compound for sacral tumors was UNC0631 (viability = 68.6% +/-22.1SD; p=4x10-7), UNC0631 was also the most effective for spinal tumors (viability = 54.4% +/-32.1SD; p=2.72x10-3), and notably, no significant compounds were identified for the single clival tumor. CONCLUSIONS Based on our drug screen results, epigenetic inhibition, particularly methyltransferase inhibition, may be a promising therapeutic avenue for the treatment of chordomas.

Author(s):  
Yu-Shan Cheng ◽  
Jose Santinni Roma ◽  
Min Shen ◽  
Caroline Mota Fernandes ◽  
Patricia S. Tsang ◽  
...  

Candida auris is an emerging fatal fungal infection that has resulted in several outbreaks in hospitals and care facilities. Current treatment options are limited by the development of drug resistance. Identifying new pharmaceuticals to combat these drug-resistant infections will thus be required to overcome this unmet medical need. We have established a bioluminescent ATP-based assay to identify new compounds and potential drug combinations showing effective growth inhibition against multiple strains of multidrug resistant Candida auris. The assay is robust and suitable for assessing large compound collections by high throughput screening. Utilizing this assay, we conducted a screen of 4,314 approved drugs and pharmacologically active compounds which yielded 25 compounds including 6 novel anti-Candida auris compounds and 13 sets of potential two drug combinations. Among the drug combinations, the serine palmitoyltransferase inhibitor myriocin demonstrated a combinational effect with flucytosine against all tested isolates during screening. This combinational effect was confirmed in 13 clinical isolates of Candida auris.


2016 ◽  
Author(s):  
Liye He ◽  
Evgeny Kulesskiy ◽  
Jani Saarela ◽  
Laura Turunen ◽  
Krister Wennerberg ◽  
...  

AbstractGene products or pathways that are aberrantly activated in cancer but not in normal tissue hold great promises for being effective and safe anticancer therapeutic targets. Many targeted drugs have entered clinical trials but so far showed limited efficacy mostly due to variability in treatment responses and often rapidly emerging resistance. Towards more effective treatment options, we will critically need multi-targeted drugs or drug combinations, which selectively inhibit the cancer cells and block distinct escape mechanisms for the cells to become resistant. Functional profiling of drug combinations requires careful experimental design and robust data analysis approaches. At the Institute for Molecular Medicine Finland (FIMM), we have developed an experimental-computational pipeline for high-throughput screening of drug combination effects in cancer cells. The integration of automated screening techniques with advanced synergy scoring tools allows for efficient and reliable detection of synergistic drug interactions within a specific window of concentrations, hence accelerating the identification of potential drug combinations for further confirmatory studies.


2020 ◽  
Vol 117 (47) ◽  
pp. 29839-29850
Author(s):  
Katelyn E. Zulauf ◽  
James E. Kirby

Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representativeEscherichia coliCRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into anE. coliK12tolChost. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.


2021 ◽  
Author(s):  
Brandon M. Murareanu ◽  
Jessica Knox ◽  
Peter Roy ◽  
Aaron W. Reinke

Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal phyla. Despite the emerging threat that microsporidia have become to humans and agricultural animals, few reliable treatment options exist. To identify novel chemical inhibitors of microsporidia infection, we developed a high-throughput screening method using Caenorhabditis elegans and the microsporidia species Nematocida parisii. We screened the Spectrum Collection of 2,560 FDA-approved compounds and natural products to identify compounds that prevent C. elegans progeny inhibition caused by N. parisii infection. We developed a semi-automated method for quantifying C. elegans progeny number in liquid culture, confirming 11 candidate microsporidia inhibitors. We show that five compounds prevent microsporidia infection by inhibiting spore firing, and demonstrate that one compound, dexrazoxane, slows infection progression. Together, our results demonstrate the effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens and provide a scalable high-throughput system for the identification and characterization of additional microsporidia inhibitors.


Author(s):  
Zhenming Jin ◽  
Xiaoyu Du ◽  
Yechun Xu ◽  
Yongqiang Deng ◽  
Meiqin Liu ◽  
...  

SUMMARYA new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan1–4. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus5,6. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 μM. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available.


2019 ◽  
Author(s):  
Akhila Bettadapur ◽  
Katherine S. Ralston

AbstractEntamoeba histolytica is a microbial eukaryote and causative agent of the diarrheal disease amoebiasis. Pathogenesis is associated with profound damage to human tissues, and treatment options are limited. We discovered that amoebae attack and kill human cells through a cell-nibbling process that we named trogocytosis (trogo-: nibble). Trogocytosis is likely to underlie tissue damage during infection and it represents a potential target for therapeutic intervention, although the mechanism is still unknown. Assays in current use to analyze trogocytosis by amoebae have not been amenable to studying different types of human cells, or to high-throughput analysis. Here, we developed two complementary assays to measure trogocytosis by quantifying human cell viability, both of which can be used for suspension and adherent cells. The first assay uses CellTiterGlo, a luminescent readout for cellular ATP levels, as a proxy for cell viability. We found that the CellTiterGlo signal is proportional to the quantity of viable cells, and can be used to detect death of human cells after co-incubation with amoebae. We established a second assay that is microscopy-based and uses two fluorescent stains to directly differentiate live and dead human cells. Both assays are simple and inexpensive, can be used with suspension and adherent human cell types, and are amenable to high-throughput approaches. These new assays are tools to improve understanding of amoebiasis pathogenesis.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Sign in / Sign up

Export Citation Format

Share Document