scholarly journals CSIG-21. DE-ORPHANIZING GPR133 - AN ADHESION GPCR REQUIRED FOR GLIOBLASTOMA PROGRESSION

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi48-vi48
Author(s):  
Joshua Frenster ◽  
Hediye Erdjument-Bromage ◽  
Gabriele Stephan ◽  
Shravanthi Chidambaram ◽  
Abdulhakeem Alghamdi ◽  
...  

Abstract We previously found GPR133 (ADGRD1), an orphan adhesion GPCR, is de novo expressed in glioblastoma (GBM) and enriched in patient-derived glioblastoma stem cells (GSCs). Knockdown of GPR133 reduces GBM cell proliferation and tumorsphere formation, and abolishes orthotopic tumor initiation in vivo in mice. Analysis of TCGA data indicates that increased GPR133 transcription inversely correlates with patient survival in GBM. While these findings underscore the importance of GPR133 in GBM and suggest an essential role in tumor growth, its ligand and mechanism of activation remain unknown. Toward identifying GPR133 ligands, we used GPR133’s N-terminal ectodomain as bait and performed affinity co-immunoprecipitation (CoIP) followed by mass spectrometry as an unbiased screening approach. We identified 490 extracellular proteins with enriched binding to GPR133 compared to control. Reverse CoIP using the 15 most abundant candidate ligands as bait to purify the receptor confirmed this interaction reproducibly in 4 candidates. Despite this binding, overexpression of these candidate ligands, or addition of purified recombinant protein, is not sufficient to increase receptor signaling as assessed by cAMP levels in HEK293 cells. This suggests that ligand binding to the GPR133 ectodomain may not be sufficient by itself to induce receptor activation. We hypothesize receptor activation requires mechanical forces in addition to ligand binding. Consistent with this hypothesis, the GPR133 binding proteins we have identified may be anchored to the extracellular matrix, mediating such mechanical force. To test whether mechanical shearing of the extracellular domain is sufficient for receptor activation, we used Dynabeads coupled to antibody against GPR133’s N-terminal ectodomain, and indeed observed receptor activation leading to elevated cAMP levels. No activation was observed when Dynabeads devoid of antibody were used. This mode of GPR133 activation might indicate a role in sensing mechanical/viscoelastic properties of GBM extracellular matrix, which may be relevant to tumor cell migration and invasion.

2021 ◽  
Author(s):  
Gabriele Stephan ◽  
Joshua D. Frenster ◽  
Ines Liebscher ◽  
Dimitris G. Placantonakis

We recently demonstrated that GPR133 (ADGRD1), an adhesion G protein-coupled receptor (aGPCR) whose canonical signaling raises cytosolic cAMP, is necessary for growth of glioblastoma (GBM) and is de novo expressed in GBM relative to normal brain tissue. We showed that dissociation of autoproteolytically generated N-terminal and C-terminal fragments (NTF and CTF) of GPR133 at the plasma membrane promotes receptor activation and increases signaling. Toward developing biologics modulating GPR133 function, we tested antibodies against the N-terminus of GPR133 for effects on receptor signaling. Treatment of HEK293T cells overexpressing GPR133 with such antibodies increased cAMP levels in a concentration-dependent manner. Analysis of supernatants following antibody treatment revealed complexes of the antibodies with the autoproteolytically cleaved NTF of GPR133. Cells expressing a cleavage-deficient mutant GPR133 (H543R) did not respond to antibody stimulation, suggesting that the effect is cleavage-dependent. The antibody-mediated stimulation of wild-type GPR133, but not the cleavage-deficient H543R mutant, was reproducible in patient-derived GBM cells. These findings provide a paradigm for modulation of GPR133 function with biologics and support the hypothesis that NTF-CTF dissociation promotes receptor activation and signaling.


2017 ◽  
Vol 45 (1) ◽  
pp. 229-236 ◽  
Author(s):  
Begum Erdogan ◽  
Donna J. Webb

Cancer-associated fibroblasts (CAFs) are major components of the surrounding stroma of carcinomas that emerge in the tumor microenvironment as a result of signals derived from the cancer cells. Biochemical cross-talk between cancer cells and CAFs as well as mechanical remodeling of the stromal extracellular matrix (ECM) by CAFs are important contributors to tumor cell migration and invasion, which are critical for cancer progression from a primary tumor to metastatic disease. In this review, we discuss key paracrine signaling pathways between CAFs and cancer cells that promote cancer cell migration and invasion. In addition, we discuss physical changes that CAFs exert on the stromal ECM to facilitate migration and invasion of cancer cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Max Bernhard ◽  
Bodo Laube

Abstract The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi34-vi34
Author(s):  
Joshua Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

Abstract We previously demonstrated that GPR133 (ADGRD1), an adhesion GPCR that signals via cytosolic cAMP increase, is de novo expressed in glioblastoma (GBM) and enriched in patient-derived glioblastoma stem cells. Knockdown of GPR133 reduces GBM cell proliferation and tumorsphere formation, and abolishes orthotopic xenograft initiation in vivo. GPR133’s requirement for GBM growth and its absence in non-malignant brain suggest its therapeutic potential, yet its mechanisms of action and activation remained unclear. Here, we demonstrate in patient-derived GBM cultures and HEK293T cells that GPR133 gets intramolecularly cleaved into N-terminal and C-terminal fragments (NTF and CTF) right after synthesis in the endoplasmic reticulum. The resulting NTF and CTF remain non-covalently bound to each other, until the mature receptor reaches the plasma membrane, where we observe dissociation of the extracellular NTF from the transmembrane-spanning CTF. While cleavage is not required for correct subcellular trafficking, the cleaved wild-type GPR133 generates significantly higher cytosolic cAMP levels than an uncleavable point mutant GPR133 (H543R), suggesting that cleavage and dissociation are involved in receptor activation. To test this hypothesis in a more controllable proxy system, we generated a fusion of the CTF of GPR133 and the N-terminus of human protease-activated receptor 1 (hPAR1). Indeed, acute thrombin-induced cleavage and shedding of the hPAR1 NTF increases intracellular cAMP levels generated by the GPR133 CTF. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. To test whether extracellular binding proteins could influence NTF shedding and/or GPR133 signaling activation, we conducted ligand discovery screens and indeed found a new GPR133 binding protein in GBM cells, which is capable of influencing receptor signaling. Together, these findings provide critical insights into GPR133’s mechanism of activation, that will guide future approaches of therapeutic targeting of GPR133 in GBM.


2021 ◽  
Author(s):  
Weiwei Wang ◽  
Yanan Tian ◽  
Xiaoliu Shi ◽  
Qiang Ma ◽  
Yue Xu ◽  
...  

2011 ◽  
Vol 25 (10) ◽  
pp. 1804-1818 ◽  
Author(s):  
K. Coopman ◽  
R. Wallis ◽  
G. Robb ◽  
A. J. H. Brown ◽  
G. F. Wilkinson ◽  
...  

The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.


2006 ◽  
Vol 95 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Eric A. Andreasen ◽  
Lijoy K. Mathew ◽  
Christiane V. Löhr ◽  
Rachelle Hasson ◽  
Robert L. Tanguay

2008 ◽  
Vol 68 (20) ◽  
pp. 8210-8220 ◽  
Author(s):  
Bharat Joshi ◽  
Scott S. Strugnell ◽  
Jacky G. Goetz ◽  
Liliana D. Kojic ◽  
Michael E. Cox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document