CSIG-05. DISSOCIATION OF THE INTRAMOLECULARLY CLEAVED N- AND C-TERMINAL FRAGMENTS OF ADHESION G PROTEIN-COUPLED RECEPTOR GPR133 (ADGRD1) INCREASES ITS CANONICAL SIGNALING IN GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi34-vi34
Author(s):  
Joshua Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

Abstract We previously demonstrated that GPR133 (ADGRD1), an adhesion GPCR that signals via cytosolic cAMP increase, is de novo expressed in glioblastoma (GBM) and enriched in patient-derived glioblastoma stem cells. Knockdown of GPR133 reduces GBM cell proliferation and tumorsphere formation, and abolishes orthotopic xenograft initiation in vivo. GPR133’s requirement for GBM growth and its absence in non-malignant brain suggest its therapeutic potential, yet its mechanisms of action and activation remained unclear. Here, we demonstrate in patient-derived GBM cultures and HEK293T cells that GPR133 gets intramolecularly cleaved into N-terminal and C-terminal fragments (NTF and CTF) right after synthesis in the endoplasmic reticulum. The resulting NTF and CTF remain non-covalently bound to each other, until the mature receptor reaches the plasma membrane, where we observe dissociation of the extracellular NTF from the transmembrane-spanning CTF. While cleavage is not required for correct subcellular trafficking, the cleaved wild-type GPR133 generates significantly higher cytosolic cAMP levels than an uncleavable point mutant GPR133 (H543R), suggesting that cleavage and dissociation are involved in receptor activation. To test this hypothesis in a more controllable proxy system, we generated a fusion of the CTF of GPR133 and the N-terminus of human protease-activated receptor 1 (hPAR1). Indeed, acute thrombin-induced cleavage and shedding of the hPAR1 NTF increases intracellular cAMP levels generated by the GPR133 CTF. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. To test whether extracellular binding proteins could influence NTF shedding and/or GPR133 signaling activation, we conducted ligand discovery screens and indeed found a new GPR133 binding protein in GBM cells, which is capable of influencing receptor signaling. Together, these findings provide critical insights into GPR133’s mechanism of activation, that will guide future approaches of therapeutic targeting of GPR133 in GBM.

2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Lijuan Li ◽  
Lixia An ◽  
Lifang Li ◽  
Yongjuan Zhao

Sphingolipids are formed via the metabolism of sphingomyelin, aconstituent of the plasma membrane, or by denovosynthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in in?ammation. This can involve, for example, activation of pro-in?ammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-in?ammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-af?nity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on in?ammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in in?ammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and in?ammatory bowel disease, which involve important in?ammatory components. A signi?cant body of research now indicates that sphingolipids are intimately involved in the in?ammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological in?ammation.


1982 ◽  
Vol 243 (2) ◽  
pp. G117-G126
Author(s):  
R. Fogel ◽  
G. W. Sharp ◽  
M. Donowitz

The effects of chloroquine diphosphate, a drug with "'membrane-stabilizing" properties, were studied on basal ileal absorption and on ileal secretion induced by increased intracellular cAMP levels and calcium (serotonin). The studies were performed on rat (in vivo) and rabbit ileum (in vitro). Intraluminal chloroquine (10(-4) M) reversed cholera toxin- and theophylline-induced secretion in rat ileum but did not alter the cholera toxin- and theophylline-induced increases in cAMP content. Addition of chloroquine (10(-4) M) to the mucosal surface of rabbit ileum did not alter basal active electrolyte transport or the serotonin-induced decreased Na and Cl absorption but inhibited the theophylline-induced C1 secretion. Addition of chloroquine (10(-4)) M) to the serosal surface stimulated net Na and Cl absorption. This effect may involve intracellular calcium. Chloroquine increased the rabbit ileal calcium content and decreased 45Ca2+ influx from the serosal surface. Both the mucosal and serosal effects of chloroquine described led to a net increase in absorptive function of the intestine and should prove useful in developing treatment of diarrheal diseases.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Jialin Fan ◽  
Yajie Gao ◽  
Yi Lu ◽  
Wenqing Wu ◽  
Shuo Yuan ◽  
...  

Abstract Ptc is a gatekeeper to avoid abnormal Hh signaling activation, but the key regulators involved in Ptc-mediated inhibition remain largely unknown. Here, we identify PKAc as a key regulator required for Ptc inhibitory function. In the absence of Hh, PKAc physically interacts with Ptc and phosphorylates Ptc at Ser-1150 and -1183 residues. The presence of Hh unleashes PKAc from Ptc and activates Hh signaling. By combining both in vitro and in vivo functional assays, we demonstrate that such Ptc–PKAc interaction and Ptc phosphorylation are both important for Ptc inhibitory function. Interestingly, we further demonstrate that PKAc is subjected to palmitoylation, contributing to its kinase activity on plasma membrane. Based on those novel findings, we establish a working model on Ptc inhibitory function: In the absence of Hh, PKAc interacts with and phosphorylates Ptc to ensure its inhibitory function; and Hh presence releases PKAc from Ptc, resulting in Hh signaling activation.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Helenia Ansuini ◽  
Annalisa Meola ◽  
Zeynep Gunes ◽  
Valentina Paradisi ◽  
Monica Pezzanera ◽  
...  

The EphA2 receptor tyrosine kinase is overexpressed in a variety of human epithelial cancers and is a determinant of malignant cellular behavior in pancreatic adenocarcinoma cells. Moreover, it is expressed in tumor endothelium and its activation promotes angiogenesis. To better clarify the therapeutic potential of monoclonal antibodies (mAbs) directed to the EphA2 receptor, we generated a large number of mAbs by differential screening of phage-Ab libraries by oligonucleotide microarray technology and implemented a strategy for the rapid identification of antibodies with the desired properties. We selected two high-affinity and highly specific EphA2 monoclonal antibodies with different in vitro properties on the human pancreatic tumor cell line MiaPaCa2. One is a potent EphA2-agonistic antibody, IgG25, that promotes receptor endocytosis and subsequent degradation, and the second is a ligand antagonist, IgG28, that blocks the binding to ephrin A1 and is cross-reactive with the mouse EphA2 receptor. We measured the effect of antibody treatment on the growth of MiaPaCa2 cells orthotopically transplanted in nude mice. Both IgG25 and IgG28 had strong antitumor and antimetastatic efficacy. In vivo treatment with IgG25 determined the reduction of the EphA2 protein levels in the tumor and the phosphorylation of FAK on Tyr576 while administration of IgG28 caused a decrease in tumor vascularization as measured by immunohistochemical analysis of CD31 in tumor sections. These data show that in a pancreatic cancer model comparable therapeutic efficacy is obtained either by promoting receptor degradation or by blocking receptor activation.


2019 ◽  
Author(s):  
Aniruddha R. Agnihotri ◽  
Sanyami S. Zunjarrao ◽  
Mukta Nagare ◽  
Rakesh S. Joshi

ABSTRACTGustatory receptor (GR) is one of the essential chemosensory molecules in Lepidopteran pests. GR is involved in sensing several canonical tastes which in turn regulate the diverse behavioral and physiological responses of these insects. In this article, we have evaluated the alteration in feeding response of Helicoverpa armigera by blocking and silencing of sugar-sensing gustatory receptor 9 (HarmGr9). Sf9 cells based assay showed that glucose analogue, Miglitol, can bind to the expressed HarmGr9. This binding might lead to an inhibition of receptor activation and downstream signaling, indicated by reduced intracellular Ca2+ fluorescence. Further, the in-vivo study illustrated the feeding rate reduced on a diet containing miglitol as compared to the larvae fed on the artificial diet. Reduction in feeding rate was prolonged in insects fed on the miglitol containing diet even after switching to the control glucose diet. Competitive cell-based assay and feeding assay, using equimolar glucose and miglitol, also showed an inhibitory effect on HarmGr-9 activation and insect feeding rate. We have observed similar feeding rate reduction in HarmGr9 knockdown in H. armigera larvae. We believe this unique approach of H. armigera feeding response inhibition by blocking the sugar receptor can be further used to develop a novel strategy for agricultural pest management.


2020 ◽  
Vol 21 (19) ◽  
pp. 7406 ◽  
Author(s):  
Pawan Faris ◽  
Sharon Negri ◽  
Angelica Perna ◽  
Vittorio Rosti ◽  
Germano Guerra ◽  
...  

Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng Wang ◽  
Yonghui Yuan ◽  
Wenda Lin ◽  
Hongshan Zhong ◽  
Ke Xu ◽  
...  

AbstractThe potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.


2007 ◽  
Vol 194 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed S Razzaque ◽  
Beate Lanske

Normal mineral ion homeostasis is tightly controlled by numerous endocrine factors that coordinately exert effects on intestine, kidney, and bone to maintain physiological balance. The importance of the fibroblast growth factor (FGF)-23–klotho axis in regulating mineral ion homeostasis has been proposed from recent research observations. Experimental studies suggest that 1) FGF23 is an important in vivo regulator of phosphate homeostasis, 2) FGF23 acts as a counter regulatory hormone to modulate the renal 1α-hydroxylase and sodium–phosphate cotransporter activities, 3) there is a trend of interrelationship between FGF23 and parathyroid hormone activities, 4) most of the FGF23 functions are conducted through the activation of FGF receptors, and 5) such receptor activation needs klotho, as a cofactor to generate downstream signaling events. These observations clearly suggest the emerging roles of the FGF23–klotho axis in maintaining mineral ion homeostasis. In this brief article, we will summarize how the FGF23–klotho axis might coordinately regulate normal mineral ion homeostasis, and how their abnormal regulation could severely disrupt such homeostasis to induce disease pathology.


2016 ◽  
Vol 36 (18) ◽  
pp. 2396-2402 ◽  
Author(s):  
Peter A. Thill ◽  
Arthur Weiss ◽  
Arup K. Chakraborty

The initiation of signaling in T lymphocytes in response to the binding of the T cell receptor (TCR) to cognate ligands is a key step in the emergence of adaptive immune responses. Conventional models posit that TCR signaling is initiated by the phosphorylation of receptor-associated immune receptor activation motifs (ITAMs). The cytoplasmic tyrosine kinase Zap70 binds to phosphorylated ITAMs, is subsequently activated, and then propagates downstream signaling. While evidence for such models is provided by experiments with cell lines,in vivo, Zap70 is bound to phosphorylated ITAMs in resting T cells. However, Zap70 is activated only upon TCR binding to cognate ligand. We report the results of computational studies of a new model for the initiation of TCR signaling that incorporates thesein vivoobservations. Importantly, the new model is shown to allow better and faster TCR discrimination between self-ligands and foreign ligands. The new model is consistent with many past experimental observations, and experiments that could further test the model are proposed.


Sign in / Sign up

Export Citation Format

Share Document