scholarly journals Pathways of China's PM2.5 air quality 2015–2060 in the context of carbon neutrality

2021 ◽  
Author(s):  
Jing Cheng ◽  
Dan Tong ◽  
Qiang Zhang ◽  
Yang Liu ◽  
Yu Lei ◽  
...  

ABSTRACT Clean air policies in China have substantially reduced PM2.5 air pollution in recent years, primarily by curbing end-of-pipe emissions. However, further reaching the WHO guideline may instead depend upon the air quality co-benefits of ambitious climate action. Here, we assess pathways of Chinese PM2.5 air quality from 2015 to 2060 under a combination of scenarios which link Global and China's climate mitigation pathways (i.e. global 2°C- and 1.5°C-pathways, NDC pledges, and carbon neutrality goals) to local clean air policies. We find that China can achieve both its near-term climate goals (peak emissions) and PM2.5 air quality annual standard (35 μg/m3) by 2030 by fulfilling its NDC pledges and continuing air pollution control policies. However, the benefits of end-of-pipe control reductions are mostly exhausted by 2030, and reducing PM2.5 exposure of the majority of the Chinese population to below 10 μg/m3 by 2060 will likely require more ambitious climate mitigation efforts such as China's carbon neutrality goals and global 1.5°C-pathways. Our results thus highlight that China's carbon neutrality goals will play a critical role in reducing air pollution exposure to the WHO guideline and protecting public health.

2020 ◽  
Vol 163 (3) ◽  
pp. 1481-1500 ◽  
Author(s):  
Sebastian Rauner ◽  
Jérôme Hilaire ◽  
David Klein ◽  
Jessica Strefler ◽  
Gunnar Luderer

AbstractThe current nationally determined contributions, pledged by the countries under the Paris Agreement, are far from limiting climate change to below 2 ∘C temperature increase by the end of the century. The necessary ratcheting up of climate policy is projected to come with a wide array of additional benefits, in particular a reduction of today’s 4.5 million annual premature deaths due to poor air quality. This paper therefore addresses the question how climate policy and air pollution–related health impacts interplay until 2050 by developing a comprehensive global modeling framework along the cause and effect chain of air pollution–induced social costs. We find that ratcheting up climate policy to a 2 ∘ compliant pathway results in welfare benefits through reduced air pollution that are larger than mitigation costs, even with avoided climate change damages neglected. The regional analysis demonstrates that the 2 ∘C pathway is therefore, from a social cost perspective, a “no-regret option” in the global aggregate, but in particular for China and India due to high air quality benefits, and also for developed regions due to net negative mitigation costs. Energy and resource exporting regions, on the other hand, face higher mitigation cost than benefits. Our analysis further shows that the result of higher health benefits than mitigation costs is robust across various air pollution control scenarios. However, although climate mitigation results in substantial air pollution emission reductions overall, we find significant remaining emissions in the transport and industry sectors even in a 2 ∘C world. We therefore call for further research in how to optimally exploit climate policy and air pollution control, deriving climate change mitigation pathways that maximize co-benefits.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


2021 ◽  
Author(s):  
Daniel Westervelt ◽  
Celeste McFarlane ◽  
Faye McNeill ◽  
R (Subu) Subramanian ◽  
Mike Giordano ◽  
...  

<p>There is a severe lack of air pollution data around the world. This includes large portions of low- and middle-income countries (LMICs), as well as rural areas of wealthier nations as monitors tend to be located in large metropolises. Low cost sensors (LCS) for measuring air pollution and identifying sources offer a possible path forward to remedy the lack of data, though significant knowledge gaps and caveats remain regarding the accurate application and interpretation of such devices.</p><p>The Clean Air Monitoring and Solutions Network (CAMS-Net) establishes an international network of networks that unites scientists, decision-makers, city administrators, citizen groups, the private sector, and other local stakeholders in co-developing new methods and best practices for real-time air quality data collection, data sharing, and solutions for air quality improvements. CAMS-Net brings together at least 32 multidisciplinary member networks from North America, Europe, Africa, and India. The project establishes a mechanism for international collaboration, builds technical capacity, shares knowledge, and trains the next generation of air quality practitioners and advocates, including domestic and international graduate students and postdoctoral researchers. </p><p>Here we present some preliminary research accelerated through the CAMS-Net project. Specifically, we present LCS calibration methodology for several co-locations in LMICs (Accra, Ghana; Kampala, Uganda; Nairobi, Kenya; Addis Ababa, Ethiopia; and Kolkata, India), in which reference BAM-1020 PM2.5 monitors were placed side-by-side with LCS. We demonstrate that both simple multiple linear regression calibration methods for bias-correcting LCS and more complex machine learning methods can reduce bias in LCS to close to zero, while increasing correlation. For example, in Kampala, Raw PurpleAir PM2.5 data are strongly correlated with the BAM-1020 PM2.5 (r<sup>2</sup> = 0.88), but have a mean bias of approximately 12 μg m<sup>-3</sup>. Two calibration models, multiple linear regression and a random forest approach, decrease mean bias from 12 μg m<sup>-3 </sup>to -1.84 µg m<sup>-3</sup> or less and improve the the r<sup>2</sup> from 0.88 to 0.96. We find similar performance in several other regions of the world. Location-specific calibration of low-cost sensors is necessary in order to obtain useful data, since sensor performance is closely tied to environmental conditions such as relative humidity. This work is a first step towards developing a database of region-specific correction factors for low cost sensors, which are exploding in popularity globally and have the potential to close the air pollution data gap especially in resource-limited countries. </p><p> </p><p> </p>


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2020 ◽  
Author(s):  
Joeri Rogelj ◽  
Daniel Huppmann ◽  
Volker Krey ◽  
Keywan Riahi ◽  
Leon Clarke ◽  
...  

<p>To understand how global warming can be kept well-below 2°C and even 1.5°C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>


2020 ◽  
Vol 10 (17) ◽  
pp. 5970
Author(s):  
Hsin-Chih Lai ◽  
Min-Chuan Hsiao ◽  
Je-Liang Liou ◽  
Li-Wei Lai ◽  
Pei-Chih Wu ◽  
...  

A comparative analysis was conducted between the costs and health benefits of the Air Pollution Control Action Plan (APCAP), which can be implemented in any country to improve air quality and human health. In this study, air quality modeling was used to simulate several scenarios and implement the Kriging method to describe the PM2.5 reduction concentration instantly. Then, health benefits were estimated using the environmental benefit mapping and analysis program (BenMAP) with results from the air quality modeling and Kriging method. To estimate the priority of APCAP, 14 pollution control measures that cover point, mobile, and area sources of air pollution in Taiwan were analyzed. The results indicate that the health benefits of the Taiwan APCAP (TAPCAP) are generally greater than the technical costs. Thus, the implementation of this strategy may result in net benefits. In addition, the benefit-to-control cost ratio for health for the 14 pollution control measures was calculated. The results provide evidence to prioritize the implementation of air quality policies with a higher benefit-cost ratio.


2019 ◽  
Vol 244 ◽  
pp. 127-137 ◽  
Author(s):  
Meifang Yu ◽  
Yun Zhu ◽  
Che-Jen Lin ◽  
Shuxiao Wang ◽  
Jia Xing ◽  
...  

Author(s):  
Bowen Jiang ◽  
Yuangang Li ◽  
Weixin Yang

At present, China’s air pollution and its treatment effect are issues of general concern in the academic circles. Based on the analysis of the development stages of air pollution in China and the development history of China’s air quality standards, we selected 17 cities of Shandong Province, China as the research objects. By expanding China’s existing Air Quality Index System, the air quality of six major pollutants including PM2.5 and PM10 in 17 cities from February 2017 to January 2020 is comprehensively evaluated. Then, with a forecast model, the air quality of the above cities in the absence of air pollution control policies since June 2018 was simulated. The results of the error test show that the model has a maximum error of 4.67% when simulating monthly assessment scores, and the maximum mean error of the four months is 3.17%. Through the comparison between the simulation results and the real evaluation results of air quality, we found that since June 2018, the air pollution control policies of six cities have achieved more than 10% improvement, while the air quality of the other 11 cities declined. The different characteristics of pollutants and the implementation of governance policies are perhaps the main reasons for the above differences. Finally, policy recommendations for the future air pollution control in Shandong and China were provided.


Sign in / Sign up

Export Citation Format

Share Document