scholarly journals The Effects of Social Distancing Policies on non-SARS-CoV-2 Respiratory Pathogens

Author(s):  
Jeff Nawrocki ◽  
Katherine Olin ◽  
Martin C Holdrege ◽  
Joel Hartsell ◽  
Lindsay Meyers ◽  
...  

Abstract Background The initial focus of the US public health response to COVID-19 was the implementation of numerous social distancing policies. While COVID-19 was the impetus for imposing these policies, it is not the only respiratory disease affected by their implementation. This study aimed to assess the impact of social distancing policies on non-SARS-CoV-2 respiratory pathogens typically circulating across multiple US states. Methods Linear mixed-effect models were implemented to explore the effects of five social distancing policies on non-SARS-CoV-2 respiratory pathogens across nine states from January 1 through May 1, 2020. The observed 2020 pathogen detection rates were compared week-by-week to historical rates to determine when the detection rates were different. Results Model results indicate that several social distancing policies were associated with a reduction in total detection rate, by nearly 15%. Policies were associated with decreases in pathogen circulation of human rhinovirus/enterovirus and human metapneumovirus, as well as influenza A, which typically decrease after winter. Parainfluenza viruses failed to circulate at historical levels during the spring. Total detection rate in April 2020 was 35% less than historical average. Many of the pathogens driving this difference fell below historical detection rate ranges within two weeks of initial policy implementation. Conclusion This analysis investigated the effect of multiple social distancing policies implemented to reduce transmission of SARS-CoV-2 on non-SARS-CoV-2 respiratory pathogens. These findings suggest that social distancing policies may be used as an impactful public health tool to reduce communicable respiratory illness.

2004 ◽  
Vol 25 (11) ◽  
pp. 962-966 ◽  
Author(s):  
Mark J. Ferson ◽  
Keira Morgan ◽  
Peter W. Robertson ◽  
Alan W. Hampson ◽  
Ian Carter ◽  
...  

AbstractObjective:To report on the investigation of a summer outbreak of acute respiratory illness among residents of a Sydney nursing home.Design:An epidemiologic and microbiological investigation of the resident cohort at the time of the outbreak and medical record review 5 months later.Setting:A nursing home located in Sydney, Australia, during February to July 1999.Patients:The cohort of residents present in the nursing home at the time of the outbreak.Interventions:Public health interventions included recommendations regarding hygiene, cohorting of residents and staff, closure to further admissions, and prompt reporting of illness; and virologic and serologic studies of residents.Results:Of the 69 residents (mean age, 85.1 years), 35 fulfilled the case definition of acute respiratory illness. Influenza A infection was confirmed in 19 residents, and phylogenetic analysis of the resulting isolate, designated H3N2 A/Sydney/203/99, showed that it differed from strains isolated in eastern Australia during the same period. Serologic evidence ofBordetellainfection was also found in 10 residents; however, stratified epidemiologic analysis pointed to influenza A as the cause of illness.Conclusions:The investigation revealed an unusual summer outbreak of influenza A concurrent with subclinical pertussis infection. Surveillance of acute respiratory illness in nursing homes throughout the year, rather than solely during epidemic periods, in combination with appropriate public health laboratory support, would allow initiation of a timely public health response to outbreaks of acute respiratory illness in this setting.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Li ◽  
Heping Wang ◽  
Ailiang Liu ◽  
Rongjun Wang ◽  
Tingting Zhi ◽  
...  

Abstract Background The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. Methods This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children’s Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. Results A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). Conclusions Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


2020 ◽  
Vol 25 (25) ◽  
Author(s):  
Karina A Top ◽  
Kristine Macartney ◽  
Julie A Bettinger ◽  
Ben Tan ◽  
Christopher C Blyth ◽  
...  

Sentinel surveillance of acute hospitalisations in response to infectious disease emergencies such as the 2009 influenza A(H1N1)pdm09 pandemic is well described, but recognition of its potential to supplement routine public health surveillance and provide scalability for emergency responses has been limited. We summarise the achievements of two national paediatric hospital surveillance networks relevant to vaccine programmes and emerging infectious diseases in Canada (Canadian Immunization Monitoring Program Active; IMPACT from 1991) and Australia (Paediatric Active Enhanced Disease Surveillance; PAEDS from 2007) and discuss opportunities and challenges in applying their model to other contexts. Both networks were established to enhance capacity to measure vaccine preventable disease burden, vaccine programme impact, and safety, with their scope occasionally being increased with emerging infectious diseases’ surveillance. Their active surveillance has increased data accuracy and utility for syndromic conditions (e.g. encephalitis), pathogen-specific diseases (e.g. pertussis, rotavirus, influenza), and adverse events following immunisation (e.g. febrile seizure), enabled correlation of biological specimens with clinical context and supported responses to emerging infections (e.g. pandemic influenza, parechovirus, COVID-19). The demonstrated long-term value of continuous, rather than incident-related, operation of these networks in strengthening routine surveillance, bridging research gaps, and providing scalable public health response, supports their applicability to other countries.


2021 ◽  
Author(s):  
Li Li ◽  
Heping Wang ◽  
Ailiang Liu ◽  
Rongjun Wang ◽  
Tingting Zhi ◽  
...  

Abstract Background: The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children.Methods: This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children’s Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (after the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed.Results: A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019. The detection rates reflected changes in these pathogens when the COVID-19 epidemic was well controlled. The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001).Conclusions: The emergence of SARS-CoV-2 was associated with the substantial reduction in the circulation of respiratory pathogens including influenza virus, rhinovirus, adenovirus, and Mycoplasma pneumoniae, as well as with the increase in respiratory syncytial virus, parainfluenza, and human metapneumovirus in Shenzhen. The reasons for this phenomenon require further studies.


2021 ◽  
Author(s):  
Yijie Huang ◽  
Ying Zhang ◽  
Tao Ai ◽  
Luo Jun ◽  
Hanmin Liu

Abstract Background. Following the outbreak of the COVID-19 pandemic, a change in the incidence and transmission of respiratory pathogens was observed. Here, we retrospectively analyzed the impact of COVID-19 on the epidemiologic characteristics of Mycoplasma pneumoniae infection among children in Chengdu, one of the largest cities of western China.Method. M. pneumoniae infection was diagnosed in 33,345 pediatric patients with respiratory symptoms at the Chengdu Women’s & Children’s Central Hospital between January 2017 and September 2020, based on a titer of ³1:160 measured by the passive agglutination assay. Differences in infection rates were examined by sex, age, and temporal distribution.Results. Two epidemic outbreaks occurred between October–December 2017 and April–December 2019, and two infection peaks were detected in the second and fourth quarters of 2017, 2018, and 2019. Due to the public health response to COVID-19, the number of positive M. pneumoniae cases significantly decreased in the second quarter of 2020. The rate of M. pneumoniae infection among children aged 3–6 years was higher than that in other age groups.Conclusion. Preschool children are more susceptible to M. pneumoniae infection and close contact appears to be the predominant factor favoring pathogen transmission. The public health response to COVID-19 can effectively control the transmission of M. pneumoniae.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Dorien H. Braam ◽  
Sharath Srinivasan ◽  
Luke Church ◽  
Zakaria Sheikh ◽  
Freya L. Jephcott ◽  
...  

Abstract Background Authorities in Somalia responded with drastic measures after the first confirmed COVID-19 case in mid-March 2020, closing borders, schools, limiting travel and prohibiting most group functions. However, the impact of the pandemic in Somalia thereafter remained unclear. This study employs a novel remote qualitative research method in a conflict-affected setting to look at how some of the most at-risk internally displaced and host populations were impacted by COVID-19, what determined their responses, and how this affected their health and socio-economic vulnerability. Methods We conducted a remote qualitative study, using Katikati, a 1-to-1 conversation management and analysis platform using short message service (SMS) developed by Lark Systems with Africa’s Voices Foundation (AVF), for semi-structured interviews over three months with participants in Mogadishu and Baidoa. We recruited a gender balanced cohort across age groups, and used an analytical framework on the social determinants of health for a narrative analysis on major themes discussed, triangulating data with existing peer-reviewed and grey literature. Results The remote research approach demonstrated efficacy in sustaining trusted and meaningful conversations for gathering qualitative data from hard-to-reach conflict-affected communities. The major themes discussed by the 35 participants included health, livelihoods and education. Two participants contracted the disease, while others reported family or community members affected by COVID-19. Almost all participants faced a loss of income and/or education, primarily as a result of the strict public health measures. Some of those who were heavily affected economically but did not directly experienced disease, denied the pandemic. Religion played an important role in participants’ beliefs in protection against and salvation from the disease. As lockdowns were lifted in August 2020, many believed the pandemic to be over. Conclusions While the official COVID-19 burden has remained relatively low in Somalia, the impact to people’s daily lives, income and livelihoods due to public health responses, has been significant. Participants describe those ‘secondary’ outcomes as the main impact of the pandemic, serving as a stark reminder of the need to broaden the public health response beyond disease prevention to include social and economic interventions to decrease people’s vulnerability to future shocks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhang ◽  
Yijie Huang ◽  
Tao Ai ◽  
Jun Luo ◽  
Hanmin Liu

Abstract Background Following the outbreak of the COVID-19 pandemic, a change in the incidence and transmission of respiratory pathogens was observed. Here, we retrospectively analyzed the impact of COVID-19 on the epidemiologic characteristics of Mycoplasma pneumoniae infection among children in Chengdu, one of the largest cities of western China. Method M. pneumoniae infection was diagnosed in 33,345 pediatric patients with respiratory symptoms at the Chengdu Women’s & Children’s Central Hospital between January 2017 and December 2020, based on a serum antibody titer of ≥1:160 measured by the passive agglutination assay. Differences in infection rates were examined by sex, age, and temporal distribution. Results Two epidemic outbreaks occurred between October-December 2017 and April-December 2019, and two infection peaks were detected in the second and fourth quarters of 2017, 2018, and 2019. Due to the public health response to COVID-19, the number of positive M. pneumoniae cases significantly decreased in the second quarter of 2020. The number of M. pneumoniae infection among children aged 3–6 years was higher than that in other age groups. Conclusions Preschool children are more susceptible to M. pneumoniae infection and close contact appears to be the predominant factor favoring pathogen transmission. The public health response to COVID-19 can effectively control the transmission of M. pneumoniae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gerardo Chowell ◽  
Sushma Dahal ◽  
Raquel Bono ◽  
Kenji Mizumoto

AbstractTo ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test’s sensitivity profile, and testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures.


2021 ◽  
Author(s):  
Junyi Liu ◽  
Lars F Westblade ◽  
Amy Chadburn ◽  
Richard Fideli ◽  
Arryn Craney ◽  
...  

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus are contagious respiratory pathogens with similar symptoms but require different treatment and management strategies. This study investigated whether laboratory blood tests can discriminate between SARS-CoV-2 and influenza infections at emergency department (ED) presentation. Methods: 723 influenza A/B positive (2018/1/1 to 2020/3/15) and 1,281 SARS-CoV-2 positive (2020/3/11 to 2020/6/30) ED patients were retrospectively analyzed. Laboratory test results completed within 48 hours prior to reporting of virus RT-PCR results, as well as patient demographics were included to train and validate a random forest (RF) model. The dataset was randomly divided into training (2/3) and testing (1/3) sets with the same SARS-CoV-2/influenza ratio. The Shapley Additive Explanations technique was employed to visualize the impact of each laboratory test on the differentiation. Results: The RF model incorporating results from 15 laboratory tests and demographic characteristics discriminated SARS-CoV-2 and influenza infections, with an area under the ROC curve value 0.90 in the independent testing set. The overall agreement with the RT-PCR results was 83% (95% CI: 80-86%). The test with the greatest impact on the differentiation was serum total calcium level. Further, the model achieved an AUC of 0.82 in a new dataset including 519 SARS-CoV-2 ED patients (2020/12/1 to 2021/2/28) and the previous 723 influenza positive patients. Serum calcium level remained the most impactful feature on the differentiation. Conclusion: We identified characteristic laboratory test profiles differentiating SARS-CoV-2 and influenza infections, which may be useful for the preparedness of overlapping COVID-19 resurgence and future seasonal influenza.


2021 ◽  
Vol 47 (04) ◽  
pp. 202-208
Author(s):  
Kevin Zhang ◽  
Avika Misra ◽  
Patrick J Kim ◽  
Seyed M Moghadas ◽  
Joanne M Langley ◽  
...  

Background: Public health measures, such as physical distancing and closure of schools and non-essential services, were rapidly implemented in Canada to interrupt the spread of the coronavirus disease 2019 (COVID-19). We sought to investigate the impact of mitigation measures during the spring wave of COVID-19 on the incidence of other laboratory-confirmed respiratory viruses in Hamilton, Ontario. Methods: All nasopharyngeal swab specimens (n=57,503) submitted for routine respiratory virus testing at a regional laboratory serving all acute-care hospitals in Hamilton between January 2010 and June 2020 were reviewed. Testing for influenza A and B, respiratory syncytial virus, human metapneumovirus, parainfluenza I–III, adenovirus, and rhinovirus/enterovirus was done routinely using a laboratory-developed polymerase chain reaction multiplex respiratory viral panel. A Bayesian linear regression model was used to determine the trend of positivity rates of all influenza samples for the first 26 weeks of each year from 2010 to 2019. The mean positivity rate of Bayesian inference was compared with the weekly reported positivity rate of influenza samples in 2020. Results: The positivity rate of influenza in 2020 diminished sharply following the population-wide implementation of COVID-19 interventions. Weeks 12–26 reported 0% positivity for influenza, with the exception of 0.1% reported in week 13. Conclusion: Public health measures implemented during the COVID-19 pandemic were associated with a reduced incidence of other respiratory viruses and should be considered to mitigate severe seasonal influenza and other respiratory virus pandemics.


Sign in / Sign up

Export Citation Format

Share Document