Biogeography of the Oceans

2020 ◽  
pp. 121-154
Author(s):  
Claudia Halsband ◽  
Shane T. Ahyong ◽  
Angelika Brandt ◽  
Ksenia Kosobokova ◽  
Peter Ward ◽  
...  

This chapter summarizes global patterns and mechanisms of both ecological and historical crustacean biogeography resulting in the contemporary species distributions described over the past decades. In the pelagic realm, hydrographic features such as ocean currents, physical depth profiles, and latitudinal temperature gradients are major structuring elements, as well as selection pressure exerted by the environment and species interactions, which have resulted in speciation over evolutionary time. Benthic crustacean distributions are additionally constrained longitudinally by continental barriers and submarine features such as ridges and seamounts. The main biogeographic patterns of both benthic and pelagic crustaceans are described for all ocean basins and the polar regions, of which the Indian Ocean is the least well studied. The Copepoda and Decapoda are generally represented with the highest number of described species, followed by Amphipoda and Isopoda. Life cycles with pelagic larvae (e.g., decapods and stomatopods) increase dispersal and enable wide distributions, while a lack of dispersive larvae promotes endemism in benthic forms (e.g., amphipods). Restricted regions with high species richness and endemism, such as the “coral triangle” (the Indo-Australian Archipelago), the Red Sea, and the Mediterranean, represent important biodiversity hotspots. Endemics are also suitable markers for past earth history events. Only a few studies cover the biogeography of crustacean taxa in all of the world’s oceans, but a few exceptions exist for decapods, amphipods, and isopods. Although the world’s oceans have been reasonably well studied for crustacean distribution and diversity, species complexes and cryptic species lacking morphological diagnostic features leave us with a large number of unconsolidated taxa. Emerging molecular tools may be able to assist with refinement of nomenclature and hence increase the resolution of crustacean biogeography in the future.

2018 ◽  
Vol 66 (4) ◽  
pp. 286 ◽  
Author(s):  
David M. Spratt ◽  
Ian Beveridge

Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts. This aspect of parasite evolution is a continuing area for research in the case of helminths, but remains to be addressed for many other parasitic groups.


Parasitology ◽  
2020 ◽  
Vol 147 (5) ◽  
pp. 533-558 ◽  
Author(s):  
Sarah G. H. Sapp ◽  
Richard S. Bradbury

AbstractAs training in helminthology has declined in the medical microbiology curriculum, many rare species of zoonotic cestodes have fallen into obscurity. Even among specialist practitioners, knowledge of human intestinal cestode infections is often limited to three genera, Taenia, Hymenolepis and Dibothriocephalus. However, five genera of uncommonly encountered zoonotic Cyclophyllidea (Bertiella, Dipylidium, Raillietina, Inermicapsifer and Mesocestoides) may also cause patent intestinal infections in humans worldwide. Due to the limited availability of summarized and taxonomically accurate data, such cases may present a diagnostic dilemma to clinicians and laboratories alike. In this review, historical literature on these cestodes is synthesized and knowledge gaps are highlighted. Clinically relevant taxonomy, nomenclature, life cycles, morphology of human-infecting species are discussed and clarified, along with the clinical presentation, diagnostic features and molecular advances, where available. Due to the limited awareness of these agents and identifying features, it is difficult to assess the true incidence of these ‘forgotten’ cestodiases as clinical misidentifications are likely to occur. Also, the taxonomic status of many of the human-infecting species of these tapeworms is unclear, hampering accurate species identification. Further studies combining molecular data and morphological observations are necessary to resolve these long-standing taxonomic issues and to elucidate other unknown aspects of transmission and ecology.


2005 ◽  
Vol 1 (4) ◽  
pp. 476-479 ◽  
Author(s):  
Cristina Pomilla ◽  
Howard C Rosenbaum

Humpback whales seasonally migrate long distances between tropical and polar regions. However, inter-oceanic exchange is rare and difficult to document. Using skin biopsy samples collected in the Indian Ocean and in the South Atlantic Ocean, and a genetic capture–recapture approach based on microsatellite genotyping, we were able to reveal the first direct genetic evidence of the inter-oceanic migration of a male humpback whale. This exceptional migration to wintering grounds of two different ocean basins questions traditional notions of fidelity to an ocean basin, and demonstrates how the behaviour of highly mobile species may be elucidated from combining genetics with long-term field studies. Our finding has implications for management of humpback whale populations, as well as for hypotheses concerning cultural transmission of behaviour.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5282 ◽  
Author(s):  
John R. Cooley ◽  
Nidia Arguedas ◽  
Elias Bonaros ◽  
Gerry Bunker ◽  
Stephen M. Chiswell ◽  
...  

The periodical cicadas of North America (Magicicada spp.) are well-known for their long life cycles of 13 and 17 years and their mass synchronized emergences. Although periodical cicada life cycles are relatively strict, the biogeographic patterns of periodical cicada broods, or year-classes, indicate that they must undergo some degree of life cycle switching. We present a new map of periodical cicada Brood V, which emerged in 2016, and demonstrate that it consists of at least four distinct parts that span an area in the United States stretching from Ohio to Long Island. We discuss mtDNA haplotype variation in this brood in relation to other periodical cicada broods, noting that different parts of this brood appear to have different origins. We use this information to refine a hypothesis for the formation of periodical cicada broods by 1- and 4-year life cycle jumps.


Author(s):  
Surat HARUAY ◽  
Supawadee PIRATAE

Background: Most of trematodes need snails to complete their life cycles. Consequently freshwater snails are served as intermediate hosts of many parasites worldwide. There is a lack of report on snail diversity and parasitic infection in snails in Sirindhorn Reservoir, Ubon Ratchathani province, Thailand. Methods: Mollusk diversity and trematode cercariae infections were investigated in snails from 120 sampling sites surround Sirindhorn Reservoir from April 2018 to June 2018. Mollusk species were identified based on their shell morphology. The presence of cercariae infections in snails was examined by cercarial shedding methods. The interaction between snail species was analyzed by the correlation method. Results: Overall, 2076 mollusks were collected which comprised six species of snails and two species of bivalves. Snail species were identified as Bithynia siamensis goniomphalos, Anentome helena, Filopaludina sumatrensis spiciosa, F. martensi martensi, F. martensi munensis and Pomacea canaliculata. The overall rate of trematode cercariae infection was 1.69% (35/2,076). The cercariae found infecting snails were Cercariaeum cercaria, Virgulate cercaria, Cotylomicrocercous cercaria and Furcocercous cercaria. The most common snails found was the assassin snail, A. helena, which showed the negative relationship among other species interactions. Conclusion: This finding indicated infection with animal’s parasites in snails in this area are common, besides, we found many species of snails in Sirindhorn Reservoir are potentially be the host of parasite in animal and human.


Zoosymposia ◽  
2021 ◽  
Vol 20 ◽  
Author(s):  
TOBIAS PFINGSTL ◽  
HEINRICH SCHATZ

This contribution provides an update on the duration of life cycles and lifespans of oribatid mites based on a literature review. The total lifespan is the sum of the immature developmental time (egg to adult) and the longevity of the adult. Most investigations were carried out in the laboratory, few were performed in the field, under field conditions and/or compared with field data. Many life cycles were investigated under different environmental influences. The life cycles of 144 oribatid species are listed. Compared with the total number of known oribatid species, this number is very low. Data for the total lifespan are given for 52 species, either from observations in the laboratory or estimated in comparison with field studies, but can only be guesses of the real lifespan. The typical lifespan of an oribatid species in temperate or boreal regions lasts between 1 and 2 years, rarely 3 years. The few investigated tropical species from laboratory experiments show generally faster development and shorter lifespans as species from temperate regions; no field studies have been carried out in the tropics yet. Long lifespan periods of 5 to 8 years are particularly characteristic of species in polar regions and in mountainous temperate regions. Some examples of species with different longevity in distinct climate regions, very long lifespans and change of life parameters under stressful laboratory conditions are presented.


2021 ◽  
Vol 5 (1) ◽  
pp. 93-120
Author(s):  
Yevgen Kiosya ◽  
Katarzyna Vončina ◽  
Piotr Gąsiorek

Many regions of the world remain unexplored in terms of the tardigrade diversity, and the islands of the Indian Ocean are no exception. In this work, we report four species of the family Echiniscidae representing three genera from Mauritius, the second largest island in the Mascarene Archipelago. Two species belong in the genus Echiniscus: Echiniscus perarmatus Murray, 1907, a pantropical species, and one new species: Echiniscus insularissp. nov., one of the smallest members of the spinulosus group and the entire genus, being particularly interesting due to the presence of males and supernumerary teeth-like spicules along the margins of the dorsal plates. The new species most closely resembles Echiniscus tropicalis Binda & Pilato, 1995, for which we present extensive multipopulation data and greatly extend its distribution eastwards towards islands of Southeast Asia. Pseudechiniscus (Meridioniscus) mascarenensissp. nov. is a typical member of the subgenus with elongated (dactyloid) cephalic papillae and the pseudosegmental plate IV’ with reduced posterior projections in males. Finally, a Bryodelphax specimen is also recorded. The assemblage of both presumably endemic and widely distributed tardigrade species in Mauritius fits the recent emerging biogeographic patterns for this group of micrometazoans.


2022 ◽  
Vol 8 ◽  
Author(s):  
Katharina Kniesz ◽  
Anna Maria Jażdżewska ◽  
Pedro Martínez Arbizu ◽  
Terue Cristina Kihara

Hydrothermal vent areas have drawn increasing interest since they were discovered in 1977. Because of chemoautotrophic bacteria, they possess high abundances of vent endemic species as well as many non-vent species around the fields. During the survey conducted by the Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources, BGR) to identify inactive polymetallic sulfide deposits along Central and Southeast Indian Ridges, the INDEX project studied the scavenging amphipod community at three newly discovered hydrothermal fields. A sample consisting of 463 representatives of Amphipoda (Malacostraca: Crustacea) was collected by means of baited traps in active and inactive vents of three different sites and subsequently studied by both morphological and genetic methods. Molecular methods included the analysis of two mitochondrial (cytochrome c oxidase subunit I [COI] and 16S rRNA) and one nuclear (18S rRNA) genes. By six delimitation methods, 22 molecular operational taxonomic units (MOTUs) belonging to 12 genera and 10 families were defined. The existence of potential species complexes was noted for the representatives of the genus Paralicella. The inactive site, where 19 species were found, showed higher species richness than did the active one, where only 10 taxa were recorded. Seven genera, Ambasiopsis, Cleonardo, Eurythenes, Parandania, Pseudonesimus, Tectovalopsis, and Valettiopsis, were observed only at inactive sites, whereas Haptocallisoma, was collected exclusively at active ones. The species Abyssorchomene distinctus (Birstein and Vinogradov, 1960), Hirondellea brevicaudata Chevreux, 1910, and Hirondellea guyoti Barnard and Ingram, 1990, have been previously reported from vent sites in the Atlantic or Pacific oceans. The present study provides the first report of Eurythenes magellanicus (H. Milne Edwards, 1848) and five other already described species in the Indian Ocean. The addition of 356 sequences strongly increases the number of amphipod barcodes in reference databases and provides for the first time COI barcodes for Cleonardo neuvillei Chevreux, 1908, Haptocallisoma abyssi (Oldevig, 1959), Hirondellea guyoti, Tectovalopsis fusilus Barnard and Ingram, 1990, and the genera Haptocallisoma, Pseudonesimus, and Valettiopsis.


Zootaxa ◽  
2020 ◽  
Vol 4747 (1) ◽  
pp. 77-112 ◽  
Author(s):  
LUIS M. P. CERÍACO ◽  
MATTHEW P. HEINICKE ◽  
KELLY L. PARKER ◽  
MARIANA P. MARQUES ◽  
AARON M. BAUER

The genus Panaspis in Angola is represented by four species, most of them part of taxonomically and nomenclaturally challenging species-complexes. We present a taxonomic revision of the group in the region and describe one new species, Panaspis mocamedensis sp. nov., endemic to the lowland areas of the Namibe province, southwestern Angola. Phylogenetic analysis using a combination of mitochondrial (16S, cytb) and nucleares (RAG1, PDC) markers, as well as morphological and meristic data support the recognition of the new species. In addition, these data support the presence of nominotypical Panaspis cabindae, P. wahlbergi and P. maculicollis in Angola. Reexamination of the Angolan population of P. breviceps was based on morphological analysis, as no molecular data from Angola is available for this species. According to our results, this population likely represents the nominotypical form, but due to its complex taxonomic and nomenclatural history and the lack of molecular data, this population needs to be reconsidered when molecular data become available. The description of a new species and revision of the Angolan Panaspis contributes to a better understanding of the true species richness of the Angolan herpetofauna, as well as to understanding the major biogeographic patterns of the region. A key to Angolan Panaspis species is also presented. 


2019 ◽  
Vol 50 (6) ◽  
pp. 303-316 ◽  
Author(s):  
V. V. Malakhov ◽  
E. V. Bogomolova ◽  
T. V. Kuzmina ◽  
E. N. Temereva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document