It’s Not My Fault: Global Warming and Individual Moral Obligations

Author(s):  
Walter Sinnott-Armstrong

To make the issue stark, let us begin with a few assumptions. I believe that these assumptions are probably roughly accurate, but none is certain, and I will not try to justify them here. Instead, I will simply take them for granted for the sake of argument. First, global warming has begun and is likely to increase over the next century. We cannot be sure exactly how much or how fast, but hot times are coming. Second, a significant amount of global warming is due to human activities. The main culprit is fossil fuels. Third, global warming will create serious problems for many people over the long term by causing climate changes, including violent storms, floods from sea-level rises, droughts, heat waves, and so on. Millions of people will probably be displaced or die. Fourth, the poor will be hurt most of all. The rich countries are causing most of the global warming, but they will be able to adapt to climate changes more easily. Poor countries that are close to sea level might be devastated. Fifth, governments, especially the biggest and richest ones, are able to mitigate global warming They can impose limits on emissions. They can require or give incentives for increased energy efficiency. They can stop deforestation and fund reforestation. They can develop ways to sequester carbon dioxide in oceans or underground. These steps will help, but the only long-run solution lies in alternatives to fossil fuels. These alternatives can be found soon if governments start massive research projects now. Sixth, it is too late to stop global warming. Because there is so much carbon dioxide in the atmosphere already, because carbon dioxide remains in the atmosphere for so long, and because we will remain dependent on fossil fuels in the near future, governments can slow down global warming or reduce its severity, but they cannot prevent it. Hence, governments need to adapt. They need to build sea walls. They need to reinforce houses that cannot withstand storms. They need to move populations from low-lying areas.

Author(s):  
Shamshad Akhtar ◽  
Muhammad Rafique Dhanani

Climate change is not the new phenomenon. The palaeo-climatic studies reveal that during the Pleistocene and Holocene periods several warm and cold periods occurred, resulted change of sea level and change in climatic processes like rise and fall of global average temperature and rainfall. The last medieval warm period was observed from 950 to 1350 AD, followed by the little Ice Age from 1400 to 1900 AD. Occurrence of these climatic changes and their impacts are considered due to natural processes that are geological and astronomical. In 1970s environmentalists and some climate scientists pointed that earth’s average temperature is rising linked with the anthropogenic causes of global warming and emission of carbon dioxide through fossil fuels. In late 1980s the problem was discussed in politics and media. To examine and monitor the global rise of temperature and its impacts due to the emission of carbon dioxide an organization of Intergovernmental Panel on Climate Change (IPCC) was created in 1988 by United Nations Environment Programme (UNEP). The IPCC released several reports based upon anthropogenic causes of climate change and their impacts. According to IPCC, 2007 report on climate change during the last 100 years the earth’s average temperature has increased up to 0.6 degree Celsius and if emission of greenhouse gases particularly carbon dioxide continues to rise, global temperature will rise up to 5.8 degrees Celsius by the end of 2100 AD. Similarly as a result of this threat of global warming, glaciers will disappear even from Antarctica and Arctic sea will open for navigation throughout the year. Many islands and coastal cities will submerge as a result of sea level rise. In 2004 Canadian Broadcasting T.V presented a documentary with the name “ The doomsday called off” in which leading climate scientists, astrophysicist and geophysicist presented evidences that science of global warming presented by IPCC scientists is incomplete and incorrect based upon computer models and stimulations which are deliberately exaggerated. Many climate scientists have shown disassociation with the IPCC views and speculations on the basis of its doubtful manipulated and exaggerated figures of global warming and some consider it a climate scam. Since then debate between UN pro man-made global warming scientists and anti-man-made global warming climate scientists continue.


2009 ◽  
Vol 8 (1) ◽  
pp. 07
Author(s):  
C. A. R. De Carvalho ◽  
W. Q. Lamas

The problems related to energy consumption and pollutant emissions for thetransport sector represent a major global concern regarding climate changes caused by greenhouse gases, directly related to the increased level of gas emissions from fossil fuels , the main one being carbon dioxide. One way tominimize this problem is through the introduction of new technologies. Hybrid cars are one of the new technology options that has the main advantage of reducing fuel consumption and therefore reducing the amount of CO2 in the atmosphere. This paper gives an introduction to hybrid vehicles, with the aim of presenting their main advantages and evaluate their impact on emissions of CO2 in the Brazilian fleet, compared to conventional vehicles.


2013 ◽  
Vol 764 ◽  
pp. 83-96 ◽  
Author(s):  
Rakshit Ameta ◽  
Shikha Panchal ◽  
Noopur Ameta ◽  
Suresh C. Ameta

World is facing problems of global warming as well as energy crisis. Both these problems can be solved to a reasonable extent by photoreduction of carbon dioxide. Here, photocatalysis enters the scene. Photocatalytic reduction to synthetic organic fuels like formaldehyde, methanol, formic acid, acetic acid, methane, etc. will provide a solution to the problem of energy crisis as it will give us alternate fuels, which can be burnt into fuel cells to generate electricity. Once we get electricity at the cost of carbon dioxide, one can convert this form of energy to any other form of energy. Secondly, it will give a solution to put a check on the increasing amount of carbon dioxide, which is the main culprit of global warming. Any conventional fuel on burring will add some molecules of carbon dioxide in the atmosphere, but synthetic fuels derived by photocatalytic reduction of carbon dioxide will not add even a single molecule of carbon dioxide in the environment. It can be considered as a short term loan of carbon dioxide from the atmosphere as the carbon dioxide molecules utilized in the synthesis of alternate fuels are generated back on burning it in fuel cell.


Author(s):  
Virendra Kumar ◽  
Swati SachdevSanjeev Kumar ◽  
Sanjeev Kumar

Methane is an important gas of earth's environment. It emits from various naturally as well as anthropogenic sources and responsible for maintaining earth's global temperature favorable for humans and other organisms to live. In recent years many activities of human development led to generation of a large volume of methane which has exhibited catastrophic effect on humans as well as animal lives on earth. Methane poses high global warming potential and has been found second most abounded gas in the environment responsible for global warming of earth after carbon dioxide which is well documented in gigantic body of literature. Methane emission is projected to reach 254 Gg/ year by the year 2025. The sources of methane generation are scattered in nature that includes marshes, paddy crops, landfills and natural anaerobic decomposition of the organic matter present in the environment and digestion in ruminants as well handling and use of fossil fuels. The versatile sources of methane generation are uncontrolled and tough to be tamed. However, its emissions and negative effects could be reduced by effectively and efficiently managing its sources of emission and utilizing generated volume for energy production. This study emphasize on the harmful as well as beneficial aspects of the methane, its utilization and strategies to control emission from various sources.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kalyan Annamalai ◽  
Siva Sankar Thanapal ◽  
Devesh Ranjan

Carbon dioxide (CO2) is one of the greenhouse gases which cause global warming. The amount of fossil fuels consumed to meet the demands in the areas of power and transportation is projected to increase in the upcoming years. Depending on carbon content, each power plant fuel has its own potential to produce carbon dioxide. Similarly, the humans consume food containing carbohydrates (CH), fat, and protein which emit CO2 due to metabolism. The biology literature uses respiratory quotient (RQ), defined as the ratio of CO2 moles exhausted per mole of O2 consumed within the body, to estimate CO2 loading in the blood stream and CO2 in nasal exhaust. Here, we apply that principle in the field of combustion to relate the RQ to CO2 emitted in tons per GJ of energy released when a fuel is combusted. The RQ value of a fuel can be determined either from fuel chemical formulae (from ultimate analyses for most liquid and solid fuels of known composition) or from exhaust gas analyses. RQ ranges from 0.5 for methane (CH4) to 1 for pure carbon. Based on the results obtained, the lesser the value of “RQ” of a fuel, the lower its global warming potential. This methodology can be further extended for an “online instantaneous measurement of CO2” in automobiles based on actual fuel use irrespective of fuel composition.


2017 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Ali Eren Alper

Since the first days of its existence, the humanity had been using natural resources to meet its needs. Especially along with the globalization period as a result of the Industrial Revolution and the rapid development of communication technologies within the last fifty years, the production has increased significantly in the world and has created negative effects on the environment. The leading adverse effects involve the emission of greenhouse gases and the global warming, which stem from the energy supply of fossil fuels as the main inputs of production. The global warming can be described as an increase in temperature worldwide. Irreversibility is the most important feature of the global warming. Therefore, in the absence of objective measures, the future costs would be much higher than the current ones. For this reason, governments need to take various measures to reduce the volume of emissions. The most important of these measures is carbon taxes. Carbon taxation encourages individuals to use fewer fossil fuels and to find new sources of energy by increasing the cost of using fossil fuels that cause carbon dioxide emissions through the price mechanism. To this end, the impacts of carbon tax levied in 18 selected European countries on economic growth, urbanization, natural gas and petroleum usage, and CO2 emissions are examined by panel data analysis for the 1995-2015 period. The analysis results indicate that a 1% increase in environmental taxes reduces carbon dioxide emissions by 0.9%. Furthermore, it is reported that a 1% increase in natural gas and petroleum consumption among the variables included in the analysis increased carbon dioxide emissions by 0.1% and 0.7%, respectively; while a 1% increase in urbanization reduced carbon dioxide emissions by 0.9%.


2013 ◽  
Vol 764 ◽  
pp. 1-82 ◽  
Author(s):  
Ibram Ganesh

This article reviews the literature related to the direct uses of CO2and its conversion into various value added chemicals including high energy density liquid fuels such as methanol. The increase in the direct uses of CO2and its conversion into potential chemical commodities is very important as it directly contributes to the mitigation of CO2related global warming problem. The method being followed at present in several countries to reduce the CO2associated global warming is capturing of CO2at its major outlets using monoethanolamine based solution absorption technique followed by storing it in safe places such as, oceans, depleted coal seams, etc., (i.e., carbon dioxide capturing and storing in safe places, CCS process). This is called as CO2sequestration. Although, the CCS process is the most understood and immediate option to mitigate the global warming problem, it is considerably expensive and has become a burden for those countries, which are practicing this process. The other alternative and most beneficial way of mitigating this global warming problem is to convert the captured CO2into certain value added bulk chemicals instead of disposing it. Conversion of CO2into methanol has been identified as one of such cost effective ways of mitigating global warming problem. Further, if H2is produced from exclusively water using only solar energy instead of any fossil fuel based energy, and is used to convert CO2into methanol there are three major benefits: i) it contributes greatly to the global warming mitigation problem, ii) it greatly saves fossil fuels as methanol production from CO2could be an excellent sustainable and renewable energy resource, and iii) as on today, there is no better process than this to store energy in a more convenient and highly usable form of high energy density liquid fuel. Not only methanol, several other potential chemicals and value added chemical intermediates can be produced from CO2. In this article, i) synthesis of several commodity chemicals including poly and cyclic-carbonates, sodium carbonate and dimethyl carbonate, carbamates, urea, vicinal diamines, 2-arylsuccinic acids, dimethyl ether, methanol, various hydrocarbons, acetic acid, formaldehyde, formic acid, lower alkanes, etc., from CO2, ii) the several direct uses of CO2, and iii) the importance of producing methanol from CO2using exclusively solar energy are presented, discussed and summarized by citing all the relevant and important references.


Author(s):  
Ayşe Sirel ◽  
Gökçen Firdevs Yücel

Diminishing natural resources have increased the prominence and implementation of approaches to sustainable planning, design, and application. Green schools minimize environmental impact by promoting environmentally friendly attitudes, reducing the need for infrastructure facilities, and using recycling as a strategy both during and after their construction. As with other green buildings, green schools reduce dependency on fossil fuels and thus limit the emission of carbon dioxide and other pollutants. Concerning global warming, green schools have the capacity to “turn back time,” creating learning circles that elicit solutions from their student bodies. In this chapter, the authors explore the economic, ecological, and social dimensions of green schools by means of a case study of an education campus in Adana, Turkey. The authors aim to elucidate how green schools may be effective in the conservation of future resources in architectural sustainability.


World on Fire ◽  
2021 ◽  
pp. 109-128
Author(s):  
Mark Rowlands

The edge required by renewable technologies is provided by a simplification of the energy supply train. This simplification consists in no longer eating animals. Animals have upside-down energy returned on energy invested values (EROIs), with up to 30 times as much energy having to be put into raising them as we get out of them through eating them or their products. At one time, when our fossil fuels sported extraordinarily high EROIs—100:1 in some cases—we could afford to take this sort of hit on our food-based energy supply. Now, however, we can no longer afford to do so. Moreover, the results of this grossly inefficient energy exchange are rising greenhouse gas emissions. By no longer eating meat, we can reduce greenhouse gas emissions by roughly 14%. Importantly, much of this reduction will be in methane and nitrous dioxide, which have very high global warming potential relative to carbon dioxide.


2010 ◽  
Vol 2 (2) ◽  
pp. 227-258 ◽  
Author(s):  
Andrés Rodríguez-Clare

This paper proposes a Ricardian model to understand the short-run and long-run aggregate effects of increased fragmentation and offshoring on rich and poor countries. The short-run analysis shows that, when offshoring is sufficiently high, further increases in offshoring benefit the poor country and hurt the rich country. But these effects may be reversed in the long run as countries adjust their research efforts in response to increased offshoring. In particular, in the long run, the rich country always gains from increased offshoring, whereas poor countries see their static gains partially eroded by a decline in their research efforts. (JEL F12, F23, L24, M16)


Sign in / Sign up

Export Citation Format

Share Document