Homing Turtles and Animal Magnetism

Secret Worlds ◽  
2021 ◽  
pp. 160-187
Author(s):  
Martin Stevens

This chapter studies the magnetic sense of animals. A magnetic sense is widespread in nature and allows a variety of animals to detect the Earth’s geomagnetic field, and to use this for orientation and navigation over short and longer distances. The chapter looks at how animals use magnetic cues and magnetic maps, which is illustrated by the much-studied sea turtles. Turtles inherit a magnetic map that allows them to calculate their position in the ocean and adjust their orientation appropriately so they can travel towards a specific goal. However, it is not only turtles that achieve remarkable feats of navigation. A number of fish species also travel great distances during different phases of their lives, often returning to natal spawning grounds to breed later on. Meanwhile, over twenty bird species have been clearly demonstrated to use magnetic information as a compass and to respond to different components of the magnetic field. The key evidence for how the avian magnetic sense works is based on a magnetite process.

2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2015 ◽  
Vol 22 (4) ◽  
pp. 361-369 ◽  
Author(s):  
L. K. Feschenko ◽  
G. M. Vodinchar

Abstract. Inversion of the magnetic field in a model of large-scale αΩ-dynamo with α-effect with stochastic memory is under investigation. The model allows us to reproduce the main features of the geomagnetic field reversals. It was established that the polarity intervals in the model are distributed according to the power law. Model magnetic polarity timescale is fractal. Its dimension is consistent with the dimension of the real geomagnetic polarity timescale.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


2019 ◽  
Vol 19 (2) ◽  
pp. 195-201
Author(s):  
Chris M. Hall ◽  
Magnar G. Johnsen

AbstractA hypothesis is proposed wherein changes in the Earth's magnetic field affect the migratory paths of snow buntings (Plectrophenax nivalis), and in particular from wintering grounds in the Russian/Ukrainian steppes to breeding grounds on Svalbard and with a typical stopover in Finnmark in northern Norway. If one were to assume ignorance of the secular movement of the magnetic north pole approximately 1500 km northwards between 1908 and 2020, the magnetoreceptor contribution to snow buntings' navigation would result in winter-to-summer migratory paths progressively further to the East. In turn, this could be a contributing factor to declining populations in Finnmark and favouring a more frequent flightpath over the Kola Peninsula. On the other hand, short-term perturbations in the magnetic field (i.e. induced by solar activity) and therefore existing for a relatively small proportion of the flight time (if at all) for the individual migrations legs seem unlikely to influence the stopover locations significantly. Even so, these space-weather induced variations cannot be disregarded, particularly for success in reaching Svalbard.


2019 ◽  
Vol 953 ◽  
pp. 127-132
Author(s):  
Yu Ling Chen ◽  
Du Yan Geng ◽  
Chuan Fang Chen

In this paper, the effects of the quantum yield of free radicals in cryptochrome exposed to different electromagnetic fields were studied through the quantum biology. The results showed that the spikes characteristics was produced in the free radicals in cryptochrome, when it exposed to the applied magnetic field (ω = 50 Hz, B0 = 50 μT). The spikes produced by the electromagnetic field was independent of the changes of polar θ. When the frequency of the magnetic field increased, the spikes characteristics produced in unit time also increased. These results showed that the environmental electromagnetic field could affect the response of organisms to the geomagnetic field by influencing the quantum yield in the mechanism of free radical pair.It provided a basis for studying the influence of environmental electromagnetic field on biology, especially the navigation of biological magnetism.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1645-1653
Author(s):  
MARINA GIBILISCO

In this work, I study the propagation of cosmic rays inside the magnetic field of the Earth, at distances d ≤ 500 Km from its surface; at these distances, the geomagnetic field deeply influences the diffusion motion of the particles. I compare the different effects of the interplanetary and of the geomagnetic fields, by also discussing their role inside the cosmic rays transport equation; finally, I present an analytical method to solve such an equation through a factorization technique.


2018 ◽  
Vol 14 (2) ◽  
pp. 20170752 ◽  
Author(s):  
Nathan F. Putman ◽  
Michelle M. Scanlan ◽  
Amanda M. Pollock ◽  
Joseph P. O'Neil ◽  
Ryan B. Couture ◽  
...  

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon ( Oncorhynchus tshawytscha ) emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted. This suggests that the magnetic field is one of several factors that influences emergence from the gravel, possibly by serving as an orientation cue that helps fish determine which way is up. Moreover, our work indicates that the Oncorhynchus species are sensitive to the magnetic field throughout their life cycles, and that it guides their movements across a range of spatial scales and habitats.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2704 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

Wide expansion of smartphones triggered a rapid demand for precise localization that can meet the requirements of location-based services. Although the global positioning system is widely used for outdoor positioning, it cannot provide the same accuracy for the indoor. As a result, many alternative indoor positioning technologies like Wi-Fi, Bluetooth Low Energy (BLE), and geomagnetic field localization have been investigated during the last few years. Today smartphones possess a rich variety of embedded sensors like accelerometer, gyroscope, and magnetometer that can facilitate estimating the current location of the user. Traditional geomagnetic field-based fingerprint localization, although it shows promising results, it is limited by the fact that various smartphones have embedded magnetic sensors from different manufacturers and the magnetic field strength that is measured from these smartphones vary significantly. Consequently, the localization performance from various smartphones is different even when the same localization approach is used. So devising an approach that can provide similar performance with various smartphones is a big challenge. Contrary to previous works that build the fingerprint database from the geomagnetic field data of a single smartphone, this study proposes using the geomagnetic field data collected from multiple smartphones to make the geomagnetic field pattern (MP) database. Many experiments are carried out to analyze the performance of the proposed approach with various smartphones. Additionally, a lightweight threshold technique is proposed that can detect user motion using the acceleration data. Results demonstrate that the localization performance for four different smartphones is almost identical when tested with the database made using the magnetic field data from multiple smartphones than that of which considers the magnetic field data from only one smartphone. Moreover, the performance comparison with previous research indicates that the overall performance of smartphones is improved.


2016 ◽  
Vol 9 (1) ◽  
pp. 01-05 ◽  
Author(s):  
Maria da Graça Cardoso Pereira-Bomfim ◽  
William Fernando Antonialli-Junior ◽  
Daniel Acosta-Avalos

Abstract. Magnetoreception is a mechanism of active orientation that occurs in animals with nervous systems. Social insects such as bees, ants, wasps and termites have been studied on the influence of the magnetic field exerts on its biology. The social wasps comprise species represented in Stenogastrinae, Vespinae and Polistinae, however studies on the influence of magnetic field on wasps Vespinae address only. The areas studied include the biomineralization of magnetic material and behavioral aspects related to changes in local intensity of the geomagnetic field. The objective of this review is to integrate knowledge of social wasps’ magnetoreception in order to build an instructive overview of the current situation of studies, therefore, provide the conceptual framework for the development of future work on the topic.Magnetorrecepção em Vespas Sociais: Uma AtualizaçãoResumo. Magnetorrecepção é um mecanismo de orientação ativa que ocorre em animais com sistema nervoso. Insetos sociais tais como abelhas, formigas, vespas e cupins são estudados sobre a influência que o campo magnético exerce em sua biologia. As vespas sociais compreendem espécies representadas em Stenogastrinae, Vespinae e Polistinae, no entanto os estudos sobre a influência do campo magnético em vespas abordam somente Vespinae. As áreas de estudo incluem a biomineralização do material magnético e aspectos comportamentais relacionados a mudanças na intensidade do campo geomagnético local. O objetivo desta revisão é integrar o conhecimento sobre magnetorrecepção em vespas sociais, a fim de construir um panorama elucidativo da atual situação dos estudos, e assim fornecer uma estrutura conceitual para o desenvolvimento de trabalhos futuros sobre o tema.


Author(s):  
William Lowrie

The Earth is surrounded by a magnetic field, which originates inside its molten core, and which for centuries has helped travellers to navigate safely across uncharted regions. The magnetic field protects life on the Earth by acting as a shield against harmful radiation from space, especially from the Sun. ‘The Earth’s magnetic field’ explains that the magnetic field at the Earth’s surface is dominantly that of an inclined dipole. The Sun’s deforming effect on the magnetic field outside the Earth is described, as are the magnetic fields of other planets. The magnetism of rocks forms the basis of palaeomagnetism, which explains how plate tectonics displaced the continents and produced oceanic magnetic anomalies whenever the geomagnetic field reversed polarity.


Sign in / Sign up

Export Citation Format

Share Document