scholarly journals Hydrology, River Regimes, and Sediment Yield

Author(s):  
John Thornes ◽  
Jamie Woodward

In comparison to the rest of Europe, Africa, and Asia, most rivers arising and flowing within the Mediterranean watershed typically drain small catchments with mountainous headwaters. The hydrology of Mediterranean catchments is strongly influenced by the seasonal distribution of precipitation, catchment geology, vegetation type and extent, and the geomorphology of the slope and channel systems. It is important to appreciate, as the preceding chapters have shown, that the area draining to the Mediterranean Sea is large and enormously variable in terms of the key controls on catchment hydrology outlined above, and it is therefore not possible to define, in hydrological terms, a strict single Mediterranean river type. However, river regimes across the basin do have a marked seasonality that is largely controlled by the climate system (Chapter 3) and, in most basins, the dominant flows occur in winter—but autumn and spring runoff is also important in many areas. These patterns reflect the general water balance of the basin as a whole, but there are key geographical patterns in catchment hydrology and sediment yield and a marked contrast is evident between the more humid north and the semi-arid south and east (Struglia et al. 2004; Chapter 21). Also, because of the long history of vegetation and hillslope modification by human activity and the more recent and widespread implementation of water resource management projects, there are almost no natural river regimes in the Mediterranean region, especially in the middle and lower reaches of river catchments (Cudennec et al. 2007). Runoff generation on hillslopes in the Mediterranean is very closely related to rainfall intensities and land surface properties as discussed in Chapter 6. While this is probably true of most catchments, runoff generation in the Mediterranean is very sensitive to vegetation cover because of the seasonal dynamics of rainfall and the role played by extreme events. The cumulative effect of these characteristics is a specific set of management problems and restoration issues and, although these are rather different in the various socio-political regimes of the region, it can be argued that they are in many ways unique to Mediterranean catchments.

2013 ◽  
Vol 10 (8) ◽  
pp. 11093-11128 ◽  
Author(s):  
N. C. MacKellar ◽  
S. J. Dadson ◽  
M. New ◽  
P. Wolski

Abstract. Land surface models (LSMs) are advanced tools which can be used to estimate energy, water and biogeochemical exchanges at regional scales. The inclusion of a river flow routing module in an LSM allows for the simulation of river discharge from a catchment and offers an approach to evaluate the response of the system to variations in climate and land-use, which can provide useful information for regional water resource management. This study offers insight into some of the pragmatic considerations of applying an LSM over a regional domain in Southern Africa. The objectives are to identify key parameter sensitivities and investigate differences between two runoff production schemes in physically contrasted catchments. The Joint UK Land Environment Simulator (JULES) LSM was configured for a domain covering Southern Africa at a 0.5° resolution. The model was forced with meteorological input from the WATCH Forcing Data for the period 1981–2001 and sensitivity to various model configurations and parameter settings were tested. Both the PDM and TOPMODEL sub-grid scale runoff generation schemes were tested for parameter sensitivities, with the evaluation focussing on simulated river discharge in sub-catchments of the Orange, Okavango and Zambezi rivers. It was found that three catchments respond differently to the model configurations and there is no single runoff parameterization scheme or parameter values that yield optimal results across all catchments. The PDM scheme performs well in the upper Orange catchment, but poorly in the Okavango and Zambezi, whereas TOPMODEL grossly underestimates discharge in the upper Orange and shows marked improvement over PDM for the Okavango and Zambezi. A major shortcoming of PDM is that it does not realistically represent subsurface runoff in the deep, porous soils typical of the Okavango and Zambezi headwaters. The dry-season discharge in these catchments is therefore not replicated by PDM. TOPMODEL, however, simulates a more realistic seasonal cycle of subsurface runoff and hence improved dry-season flow.


2021 ◽  
Author(s):  
Stefano Materia ◽  
Constantin Ardilouze ◽  
Chloé Prodhomme ◽  
Markus G. Donat ◽  
Marianna Benassi ◽  
...  

AbstractLand surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.


2013 ◽  
Vol 10 (3) ◽  
pp. 1501-1516 ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
P. Ciais

Abstract. Regional cooling resulting from increases in surface albedo has been identified in several studies as the main biogeophysical effect of past land use-induced land cover changes (LCC) on climate. However, the amplitude of this effect remains quite uncertain due to, among other factors, (a) uncertainties in the extent of historical LCC and, (b) differences in the way various models simulate surface albedo and more specifically its dependency on vegetation type and snow cover. We derived monthly albedo climatologies for croplands and four other land cover types from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. We then reconstructed the changes in surface albedo between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 and 1992 used by seven land surface models (LSMs) in the context of the LUCID ("Land Use and Climate: identification of robust Impacts") intercomparison project. These reconstructions show surface albedo increases larger than 10% (absolute) in winter, and larger than 2% in summer between 1870 and 1992 over areas that experienced intense deforestation in the northern temperate regions. The historical surface albedo changes estimated with MODIS data were then compared to those simulated by the various climate models participating in LUCID. The inter-model mean albedo response to LCC shows a similar spatial and seasonal pattern to the one resulting from the MODIS-based reconstructions, that is, larger albedo increases in winter than in summer, driven by the presence of snow. However, individual models show significant differences between the simulated albedo changes and the corresponding reconstructions, despite the fact that land cover change maps are the same. Our analyses suggest that the primary reason for those discrepancies is how LSMs parameterize albedo. Another reason, of secondary importance, results from differences in their simulated snow extent. Our methodology is a useful tool not only to infer observations-based historical changes in land surface variables impacted by LCC, but also to point out deficiencies of the models. We therefore suggest that it could be more widely developed and used in conjunction with other tools in order to evaluate LSMs.


2017 ◽  
Author(s):  
Hanneke Luijting ◽  
Dagrun Vikhamar-Schuler ◽  
Trygve Aspelien ◽  
Mariken Homleid

Abstract. In Norway, thirty percent of the annual precipitation falls as snow. Knowledge of the snow reservoir is therefore important for energy production and water resource management. The land surface model SURFEX with the detailed snowpack scheme Crocus (SURFEX/Crocus) has been run with a grid spacing of approximately 1 km over an area in southern Norway for two years (01 September 2014–31 August 2016), using two different forcing data sets: 1) hourly meteorological forecasts from the operational weather forecast model AROME MetCoOp (2.5 km grid spacing), and 2) gridded hourly observations of temperature and precipitation (1 km grid spacing) in combination with the meteorological forecasts from AROME MetCoOp. We present an evaluation of the modeled snow depth and snow cover, as compared to point observations of snow depth and to MODIS satellite images of the snow-covered area. The evaluation focuses on snow accumulation and snow melt. The results are promising. Both experiments are capable of simulating the snow pack over the two winter seasons, but there is an overestimation of snow depth when using only meteorological forecasts from AROME MetCoOp, although the snow-covered area throughout the melt season is better represented by this experiment. The errors, when using AROME MetCoOp as forcing, accumulate over the snow season, showing that assimilation of snow depth observations into SURFEX/Crocus might be necessary when using only meteorological forecasts as forcing. When using gridded observations, the simulation of snow depth is significantly improved, which shows that using a combination of gridded observations and meteorological forecasts to force a snowpack model is very useful and can give better results than only using meteorological forecasts. There is however an underestimation of snow ablation in both experiments. This is mainly due to the absence of wind-induced erosion of snow in the SURFEX/Crocus model, underestimated snow melt and biases in the forcing data.


2019 ◽  
Vol 11 (3) ◽  
pp. 216 ◽  
Author(s):  
Martha Anderson ◽  
George Diak ◽  
Feng Gao ◽  
Kyle Knipper ◽  
Christopher Hain ◽  
...  

The energy delivered to the land surface via insolation is a primary driver of evapotranspiration (ET)—the exchange of water vapor between the land and atmosphere. Spatially distributed ET products are in great demand in the water resource management community for real-time operations and sustainable water use planning. The accuracy and deliverability of these products are determined in part by the characteristics and quality of the insolation data sources used as input to the ET models. This paper investigates the practical utility of three different insolation datasets within the context of a satellite-based remote sensing framework for mapping ET at high spatiotemporal resolution, in an application over the Sacramento–San Joaquin Delta region in California. The datasets tested included one reanalysis product: The Climate System Forecast Reanalysis (CFSR) at 0.25° spatial resolution, and two remote sensing insolation products generated with geostationary satellite imagery: a product for the continental United States at 0.2°, developed by the University of Wisconsin Space Sciences and Engineering Center (SSEC) and a coarser resolution (1°) global Clouds and the Earth’s Radiant Energy System (CERES) product. The three insolation data sources were compared to pyranometer data collected at flux towers within the Delta region to establish relative accuracy. The satellite products significantly outperformed CFSR, with root-mean square errors (RMSE) of 2.7, 1.5, and 1.4 MJ·m−2·d−1 for CFSR, CERES, and SSEC, respectively, at daily timesteps. The satellite-based products provided more accurate estimates of cloud occurrence and radiation transmission, while the reanalysis tended to underestimate solar radiation under cloudy-sky conditions. However, this difference in insolation performance did not translate into comparable improvement in the ET retrieval accuracy, where the RMSE in daily ET was 0.98 and 0.94 mm d−1 using the CFSR and SSEC insolation data sources, respectively, for all the flux sites combined. The lack of a notable impact on the aggregate ET performance may be due in part to the predominantly clear-sky conditions prevalent in central California, under which the reanalysis and satellite-based insolation data sources have comparable accuracy. While satellite-based insolation data could improve ET retrieval in more humid regions with greater cloud-cover frequency, over the California Delta and climatologically similar regions in the western U.S., the CFSR data may suffice for real-time ET modeling efforts.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 149-158 ◽  
Author(s):  
Rebecca Schonter ◽  
Vladimir Novotny

To more adequately protect receiving water bodies, government policy is leading toward adaptation of integrated management approaches that protect the integrity of the ecosystem as a whole. Approaching natural water quality is a goal of integrated water resource management. Ecoregions represent geographical areas of relatively similar land surface form, mineral availability, natural vegetation and land uses, and therefore, represent areas of relatively similar background water quality. Water quality at relatively unimpacted reference locations is representative of regional natural water quality and may be reasonably extrapolated to other similar locations within the ecoregion. These concepts were applied to the Southeastern Wisconsin Till Plains ecoregion and the Milwaukee River, Wisconsin.


2015 ◽  
Vol 10 (4) ◽  
pp. 739-746 ◽  
Author(s):  
Peng Li ◽  
Jun Liu ◽  
Rui Fu ◽  
Xin Liu ◽  
Yanyan Zhou ◽  
...  

Urbanization has strongly changed the condition of the land surface and therefore rainfall runoff varies greatly. Peak flood flow and flood volumes increase with runoff volume. Low Impact Development (LID) is a sustainable concept that minimizes the effects of urbanization to maintain natural hydrological function in urban cities and has therefore gained increasing attention. This paper studies the effects of low impact development measures on the reduction of runoff generation and peak runoff at different locations in Longyan, China. The study was conducted using the SWMM model (5.1.006) with a newly developed LID module. In this study, the LID module, which includes rain gardens, green roofs, permeable pavements, and rain barrels, was used to simulate different layout scenarios and different rainfall patterns. The results show that the performance of a certain LID is similar at different locations but the reduction effect on runoff and peak flow varies. Rain gardens and permeable pavements perform a similar degree of reduction under different durations, but the peak flow reduction by rain barrels and green roofs varies greatly. Further research should focus on composite LID applications in other locations, combination with the local pipe network layout, which will ensure that the implemented system will be aesthetically pleasing, economically viable, and effective for reducing runoff and peak flow.


2018 ◽  
Author(s):  
Hocheol Seo ◽  
Yeonjoo Kim

Abstract. Fire plays an important role in terrestrial ecosystems. The burning of biomass affects carbon and water fluxes and the distribution of vegetation. To understand the effect of the interactive processes of fire and ecological succession on land surface carbon and water fluxes, this study utilized the Community Land Model version 4.5 to conduct a series of experiments that included and excluded fire and dynamic vegetation processes. Results of the experiments that excluded dynamic vegetation showed a global increase in net ecosystem production (NEP) in post-fire regions, which has been shown in previous studies with the similar modeling practices. However, inclusion of dynamic vegetation revealed a fire-induced decrease in NEP in some regions. Additionally, the carbon sink in post-fire regions reduced when the dominant vegetation type was changed from trees to grasses. This study shows that inclusion of dynamic vegetation enhances carbon emissions from fire by reducing terrestrial carbon sinks; however, this effect is somewhat mitigated by the increase in terrestrial carbon sinks when dynamic vegetation is not used. Results also show that fire-induced changes in vegetation modify the soil moisture profile because grasslands are more dominant in post-fire regions; this results in less moisture within top soil layers compared to non-burned regions, even though transpiration is reduced overall. These findings are different from those of previous fire model evaluations, that ignore vegetation dynamics, and thus highlight the importance of interactive processes between fire and vegetation dynamics, particularly when evaluating recent model developments with respect to fire and vegetation dynamics.


2012 ◽  
Vol 13 (3) ◽  
pp. 785-807 ◽  
Author(s):  
Agustín Robles-Morua ◽  
Enrique R. Vivoni ◽  
Alex S. Mayer

Abstract A distributed hydrologic model is used to evaluate how runoff mechanisms—including infiltration excess (RI), saturation excess (RS), and groundwater exfiltration (RG)—influence the generation of streamflow and evapotranspiration (ET) in a mountainous region under the influence of the North American monsoon (NAM). The study site, the upper Sonora River basin (~9350 km2) in Mexico, is characterized by a wide range of terrain, soil, and ecosystem conditions obtained from best available data sources. Three meteorological scenarios are compared to explore the impact of spatial and temporal variations of meteorological characteristics on land surface processes and to identify the value of North American Land Data Assimilation System (NLDAS) forcing products in the NAM region. The following scenarios are considered for a 1-yr period: 1) a sparse network of ground-based stations, 2) raw forcing products from NLDAS, and 3) NLDAS products adjusted using available station data. These scenarios are discussed in light of spatial distributions of precipitation, streamflow, and runoff mechanisms during annual, seasonal, and monthly periods. This study identified that the mode of runoff generation impacts seasonal relations between ET and soil moisture in the water-limited region. In addition, ET rates at annual and seasonal scales were related to the runoff mechanism proportions, with an increase in ET when RS was dominant and a decrease in ET when RI was more important. The partitioning of runoff mechanisms also helps explain the monthly progression of runoff ratios in these seasonally wet hydrologic systems. Understanding the complex interplay between seasonal responses of runoff mechanisms and evapotranspiration can yield information that is of interest to hydrologists and water managers.


Sign in / Sign up

Export Citation Format

Share Document