N-Methyl-D-Aspartate Receptors

Author(s):  
Gary J. Iacobucci ◽  
Gabriela K. Popescu

Discovered more than 70 years ago due to advances in electrophysiology and cell culture techniques, N-methyl-D-aspartate (NMDA) receptors remain the target of assiduous basic and clinical research. This interest flows from their intimate engagement with fundamental processes in the mammalian central nervous system and the resulting natural desire to understand how this receptor’s genetically encoded structural properties generate their distinctive functional features and how in turn these unique functional attributes play into the larger opus of physiological and pathological processes. From the overwhelming literature on the subject, the authors briefly outline contemporary understanding of the receptor’s evolutionary origins, molecular diversity, and expression patterns; sketch hypothesized correlations between structural dynamics, signal kinetics, and pathophysiological consequences; and highlight the breadth of processes in which NMDA receptors are implicated, many of which remain poorly understood. Continued developments in cryo-electron microscopy, whole-genome sequencing and editing, imaging, and other emerging technologies will likely confirm some of the current hypotheses and challenge others to produce a more accurate reflection of these receptors’ complex operation and myriad roles in health and disease.

1981 ◽  
Vol 26 (4) ◽  
pp. 315-322 ◽  
Author(s):  
S. T. Green

Direct intercellular communication (cell to cell coupling) is a mechanism for the local transit of information between cells and supplements the endocrine and nervous systems. Electrophysiological, biochemical, histological and cell culture techniques have established the widespread existence of coupling in mammalian tissues, and the importance of the gap junction has been recognised. Information is carried in the form of ions and small molecules between cells, and sensitive apparatus exists within each cell for controlling the permeability of the junctional membrane. The system may be important in the control and co-ordination of cellular metabolism and growth in the embryo and in adult tissues. Disorders of direct intercellular communication may be important in the pathogenesis of some diseases, in particular cancer.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


2021 ◽  
Vol 22 (6) ◽  
pp. 3042
Author(s):  
Eun Ju Lee ◽  
Khurshid Ahmad ◽  
Shiva Pathak ◽  
SunJu Lee ◽  
Mohammad Hassan Baig ◽  
...  

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Brigitte Altmann ◽  
Christoph Grün ◽  
Cordula Nies ◽  
Eric Gottwald

In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.


2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Gavin J Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

ABSTRACT Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.


1992 ◽  
Vol 20 (1) ◽  
pp. 52-60
Author(s):  
Gabriela Ciapetti ◽  
Elisabetta Cenni ◽  
Daniela Cavedagna ◽  
Loredana Pratelli ◽  
Arturo Pizzoferrato

Cell culture techniques are usually used in the field of biomaterials research and development in order to detect toxic components. Morphological assays are the most widely used methods and give the very first information about the biological compatibility of materials. Cell function assays give more quantitative data, but the comparison of data between different laboratories is difficult. Some of the cell culture methods that are used for biocompatibility studies are described briefly here, and results from our laboratory are reported. Despite some inherent limitations of the cell culture techniques, they are an accurate and reliable method of predicting the biological compatibility of materials to be implanted in vivo.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 792
Author(s):  
Natalie Heinen ◽  
Mara Klöhn ◽  
Eike Steinmann ◽  
Stephanie Pfaender

SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.


2018 ◽  
Vol 25 (5) ◽  
pp. 455-474 ◽  
Author(s):  
Colm Cunningham ◽  
Aisling Dunne ◽  
Ana Belen Lopez-Rodriguez

Astrocytes are the most numerous cell type in the brain and perform several essential functions in supporting neuronal metabolism and actively participating in neural circuit and behavioral function. They also have essential roles as innate immune cells in responding to local neuropathology, and the manner in which they respond to brain injury and degeneration is the subject of increasing attention in neuroscience. Although activated astrocytes have long been thought of as a relatively homogenous population, which alter their phenotype in a relatively stereotyped way upon central nervous system injury, the last decade has revealed substantial heterogeneity in the basal state and significant heterogeneity of phenotype during reactive astrocytosis. Thus, phenotypic diversity occurs at two distinct levels: that determined by regionality and development and that determined by temporally dynamic changes to the environment of astrocytes during pathology. These inflammatory and pathological states shape the phenotype of these cells, with different consequences for destruction or recovery of the local tissue, and thus elucidating these phenotypic changes has significant therapeutic implications. In this review, we will focus on the phenotypic heterogeneity of astrocytes in health and disease and their propensity to change that phenotype upon subsequent stimuli.


Sign in / Sign up

Export Citation Format

Share Document