The Psychobiology of Listening

Author(s):  
Graham D. Bodie ◽  
Andrew D. Wolvin

Listening is frequently considered to be synonymous with hearing. While the process of hearing is complex in itself, the process of listening extends beyond human physiology and neurobiology and includes sensory processes of vision. Indeed, as the McGurk effect suggests, the visual component of listening can dominate human perception. Listening also incorporates brain activity through cognitive functions of attention, comprehension, inference making, and memory. Other sensory processes, such as touch, taste, and smell, further impact the physiology and neurobiology of listening. This chapter utilizes research across the academic landscape to provide a theoretical framework for the physiological and perceptual components of listening that integrates perspectives of both the listener and the person (i.e., speaker) who is listened to.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Shira Baror ◽  
Biyu J He

Abstract Flipping through social media feeds, viewing exhibitions in a museum, or walking through the botanical gardens, people consistently choose to engage with and disengage from visual content. Yet, in most laboratory settings, the visual stimuli, their presentation duration, and the task at hand are all controlled by the researcher. Such settings largely overlook the spontaneous nature of human visual experience, in which perception takes place independently from specific task constraints and its time course is determined by the observer as a self-governing agent. Currently, much remains unknown about how spontaneous perceptual experiences unfold in the brain. Are all perceptual categories extracted during spontaneous perception? Does spontaneous perception inherently involve volition? Is spontaneous perception segmented into discrete episodes? How do different neural networks interact over time during spontaneous perception? These questions are imperative to understand our conscious visual experience in daily life. In this article we propose a framework for spontaneous perception. We first define spontaneous perception as a task-free and self-paced experience. We propose that spontaneous perception is guided by four organizing principles that grant it temporal and spatial structures. These principles include coarse-to-fine processing, continuity and segmentation, agency and volition, and associative processing. We provide key suggestions illustrating how these principles may interact with one another in guiding the multifaceted experience of spontaneous perception. We point to testable predictions derived from this framework, including (but not limited to) the roles of the default-mode network and slow cortical potentials in underlying spontaneous perception. We conclude by suggesting several outstanding questions for future research, extending the relevance of this framework to consciousness and spontaneous brain activity. In conclusion, the spontaneous perception framework proposed herein integrates components in human perception and cognition, which have been traditionally studied in isolation, and opens the door to understand how visual perception unfolds in its most natural context.


2020 ◽  
pp. 389-430
Author(s):  
Robert H. Logie ◽  
Clément Belletier ◽  
Jason M. Doherty

Multiple theories of working memory are described in the chapters of this book and often these theories are viewed as being mutually incompatible, yet each is associated with a supporting body of empirical evidence. This chapter argues that many of these differences reflect different research questions, different levels of explanation, and differences in how participants perform their assigned tasks in different laboratories, rather than fundamental theoretical adversity. It describes a version of a multiple component working memory in which a range of specialized cognitive functions (or mental tools) act in concert, giving the impression, at a different level of explanation, of a unified cognitive system. The chapter argues that more rapid and more substantial scientific progress on the understanding of the concept of working memory would be achieved through identifying the levels of explanation explored within each theoretical framework, and attempting to integrate theoretical frameworks rather than perpetuating debate with no clear resolution in sight.


1995 ◽  
Vol 18 (2) ◽  
pp. 365-366
Author(s):  
Rumyana Kristeva-Feige ◽  
Bernd Feige

AbstractPosner & Raichle's (1994) book is a fascinating and readable account of the studies the authors have conducted on the localization of cognitive functions in the brain mainly using PET and EEC evoked potential methods. Our criticism concerns the underrepresentation of some imaging techniques (magnetoencephalography) and some forms of brain activity (spontaneous activity). Furthermore, the book leaves the reader with the impression that the brain only responds to external events.


10.14311/492 ◽  
2003 ◽  
Vol 43 (6) ◽  
Author(s):  
M. V. Jokl

Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2) and decitvoc dTv (for total volatile organic compound TVOC). Equations of these new units have been proved by application of a) experimental relationships between odor intensity (representing odor perception by the human body) and odor concentrations of CO2 and TVOC, b) individually  measured CO2 and TVOC levels (concentrations) – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christopher Timmermann ◽  
Leor Roseman ◽  
Michael Schartner ◽  
Raphael Milliere ◽  
Luke T. J. Williams ◽  
...  

AbstractStudying transitions in and out of the altered state of consciousness caused by intravenous (IV) N,N-Dimethyltryptamine (DMT - a fast-acting tryptamine psychedelic) offers a safe and powerful means of advancing knowledge on the neurobiology of conscious states. Here we sought to investigate the effects of IV DMT on the power spectrum and signal diversity of human brain activity (6 female, 7 male) recorded via multivariate EEG, and plot relationships between subjective experience, brain activity and drug plasma concentrations across time. Compared with placebo, DMT markedly reduced oscillatory power in the alpha and beta bands and robustly increased spontaneous signal diversity. Time-referenced and neurophenomenological analyses revealed close relationships between changes in various aspects of subjective experience and changes in brain activity. Importantly, the emergence of oscillatory activity within the delta and theta frequency bands was found to correlate with the peak of the experience - particularly its eyes-closed visual component. These findings highlight marked changes in oscillatory activity and signal diversity with DMT that parallel broad and specific components of the subjective experience, thus advancing our understanding of the neurobiological underpinnings of immersive states of consciousness.


2009 ◽  
pp. 33-59
Author(s):  
Yingxu Wang

Cognitive Informatics (CI) is a transdisciplinary enquiry of the internal information processing mechanisms and processes of the brain and natural intelligence shared by almost all science and engineering disciplines. This article presents an intensive review of the new field of CI. The structure of the theoretical framework of CI is described encompassing the Layered Reference Model of the Brain (LRMB), the OAR model of information representation, Natural Intelligence (NI) vs. Artificial Intelligence (AI), Autonomic Computing (AC) vs. imperative computing, CI laws of software, the mechanism of human perception processes, the cognitive processes of formal inferences, and the formal knowledge system. Three types of new structures of mathematics, Concept Algebra (CA), Real-Time Process Algebra (RTPA), and System Algebra (SA), are created to enable rigorous treatment of cognitive processes of the brain as well as knowledge representation and manipulation in a formal and coherent framework. A wide range of applications of CI in cognitive psychology, computing, knowledge engineering, and software engineering has been identified and discussed.


2015 ◽  
Vol 112 (49) ◽  
pp. E6798-E6807 ◽  
Author(s):  
Maxwell A. Bertolero ◽  
B. T. Thomas Yeo ◽  
Mark D’Esposito

Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions.


Sign in / Sign up

Export Citation Format

Share Document