scholarly journals Altered cortical morphology in major depression disorder patients with suicidality

2021 ◽  
Vol 1 (1) ◽  
pp. 13-22
Author(s):  
Huiru Li ◽  
Huawei Zhang ◽  
Li Yin ◽  
Feifei Zhang ◽  
Ziqi Chen ◽  
...  

Abstract Background Major depressive disorder (MDD) is associated with high risk of suicide, but the biological underpinnings of suicidality in MDD patients are far from conclusive. Previous neuroimaging studies using voxel-based morphometry (VBM) demonstrated that depressed individuals with suicidal thoughts or behaviors exhibit specific cortical structure alterations. To complement VBM findings, surface-based morphometry (SBM) can provide more details into gray matter structure, including the cortical complexity, cortical thickness and sulcal depth for brain images. Objective This study aims to use SBM to investigate cortical morphology alterations to obtain evidence for neuroanatomical alterations in depressed patients with suicidality. Methods Here, 3D T1-weighted MR images of brain from 39 healthy controls, 40 depressed patients without suicidality (patient controls), and 39 with suicidality (suicidal groups) were analyzed based on SBM to estimate the fractal dimension, gyrification index, sulcal depth, and cortical thickness using the Computational Anatomy Toolbox. Correlation analyses were performed between clinical data and cortical surface measurements from patients. Results Surface-based morphometry showed decreased sulcal depth in the parietal, frontal, limbic, occipital and temporal regions and decreased fractal dimension in the frontal regions in depressed patients with suicidality compared to both healthy and patient controls. Additionally, in patients with depression, the sulcal depth of the left caudal anterior cingulate cortex was negatively correlated with Hamilton Depression Rating Scale scores. Conclusions Depressed patients with suicidality had abnormal cortical morphology in some brain regions within the default mode network, frontolimbic circuitry and temporal regions. These structural deficits may be associated with the dysfunction of emotional processing and impulsivity control. This study provides insights into the underlying neurobiology of the suicidal brain.

2017 ◽  
Vol 48 (10) ◽  
pp. 1731-1737 ◽  
Author(s):  
Beata R. Godlewska ◽  
Charles Masaki ◽  
Ann L. Sharpley ◽  
Philip J. Cowen ◽  
Uzay E. Emir

BackgroundThe possible role of glutamate in the pathophysiology and treatment of depression is of intense current interest. Proton magnetic resonance spectroscopy (MRS) enables the detection of glutamate in the living human brain and meta-analyses of previous MRS studies in depressed patients have suggested that glutamate levels are decreased in anterior brain regions. Nevertheless, at conventional magnetic field strengths [1.5–3 Tesla (T)], it is difficult to separate glutamate from its metabolite and precursor, glutamine, with the two often being measured together as Glx. In contrast, MRS at 7 T allows clear spectral resolution of glutamate and glutamine.MethodWe studied 55 un-medicated depressed patients and 50 healthy controls who underwent MRS scanning at 7 T with voxels placed in anterior cingulate cortex, occipital cortex and putamen (PUT). Neurometabolites were calculated using the unsuppressed water signal as a reference.ResultsCompared with controls, depressed patients showed no significant difference in glutamate in any of the three voxels studied; however, glutamine concentrations in the patients were elevated by about 12% in the PUT (p < 0.001).ConclusionsThe increase in glutamine in PUT is of interest in view of the postulated role of the basal ganglia in the neuropsychology of depression and is consistent with elevated activity in the descending cortical glutamatergic innervation to the PUT. The basal ganglia have rarely been the subject of MRS investigations in depressed patients and further MRS studies of these structures in depression are warranted.


2007 ◽  
Vol 19 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Ethan Kross ◽  
Tobias Egner ◽  
Kevin Ochsner ◽  
Joy Hirsch ◽  
Geraldine Downey

Rejection sensitivity (RS) is the tendency to anxiously expect, readily perceive, and intensely react to rejection. This study used functional magnetic resonance imaging to explore whether individual differences in RS are mediated by differential recruitment of brain regions involved in emotional appraisal and/or cognitive control. High and low RS participants were scanned while viewing either representational paintings depicting themes of rejection and acceptance or nonrepresentational control paintings matched for positive or negative valence, arousal and interest level. Across all participants, rejection versus acceptance images activated regions of the brain involved in processing affective stimuli (posterior cingulate, insula), and cognitive control (dorsal anterior cingulate cortex; medial frontal cortex). Low and high RS individuals' responses to rejection versus acceptance images were not, however, identical. Low RS individuals displayed significantly more activity in left inferior and right dorsal frontal regions, and activity in these areas correlated negatively with participants' self-report distress ratings. In addition, control analyses revealed no effect of viewing negative versus positive images in any of the areas described above, suggesting that the aforementioned activations were involved in rejection-relevant processing rather than processing negatively valenced stimuli per se. Taken together, these findings suggest that responses in regions traditionally implicated in emotional processing and cognitive control are sensitive to rejection stimuli irrespective of RS, but that low RS individuals may activate prefrontal structures to regulate distress associated with viewing such images.


2019 ◽  
Vol 8 (11) ◽  
pp. 1966 ◽  
Author(s):  
Jun-Cheng Weng ◽  
Yu-Syuan Chou ◽  
Yuan-Hsiung Tsai ◽  
Chun-Te Lee ◽  
Ming-Hong Hsieh ◽  
...  

Our study aimed to clarify the neuroimaging correlates of suicide attempt by comparing differences in functional magnetic resonance imaging (fMRI) among depressed suicide attempters, depressed patients without suicide attempt history, and healthy controls through comprehensive and novel fMRI analyses and methods in the same study population. The association between depression severity and aspects of the brain imaging was also discussed. Our study recruited 109 participants who were assigned to three groups: 33 depressed patients with suicide attempt (SA), 32 depressed patients without suicide attempt (NS), and 44 healthy controls (HC). All participants were scanned using a 3 T MRI imaging system to obtain resting-state functional images. In seed-based correlation analysis, we found altered functional connectivity in some brain regions of the SA compared with the NS or HC, especially in the hippocampus and thalamus. In the voxel-based analysis, our results showed differential activation and regional homogeneity of the temporal lobe and several brain regions in the SA compared with the NS and HC. We also found that some brain areas correlated with the Hamilton Depression Rating Scale (HAM-D), anxiety, and depression scores, especially in the frontal and temporal lobes. Graph theoretical analysis (GTA) and network-based statistical (NBS) analyses revealed different topological organization as well as slightly better global integration and worse local segregation of the brain network (i.e., more like a random network) in depressed participants compared with healthy participants. We concluded that the brain function of major depressive disorders with and without suicide attempts changed compared with healthy participants.


2019 ◽  
Vol 29 (11) ◽  
pp. 5901-5909 ◽  
Author(s):  
Meng Li ◽  
Kelei Hua ◽  
Shumei Li ◽  
Changhong Li ◽  
Wenfeng Zhan ◽  
...  

BJPsych Open ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Duygu Tosun ◽  
Prabha Siddarth ◽  
Jennifer Levitt ◽  
Rochelle Caplan

BackgroundThe relationship between cortical thickness (CThick) and sulcal depth (SDepth) changes across brain regions during development. Epilepsy youth have CThick and SDepth abnormalities and prevalent psychiatric disorders.AimsThis study compared the CThick–SDepth relationship in children with focal epilepsy with typically developing children (TDC) and the role played by seizure and psychopathology variables.MethodA surface-based, computational high-resolution three-dimesional (3D) magnetic resonance image analytic technique compared regional CThick–SDepth relationships in 42 participants with focal epilepsy and 46 TDC (6–16 years) imaged in a 1.5 Tesla scanner. Psychiatric interviews administered to each participant yielded psychiatric diagnoses. Parents provided seizure-related information.ResultsThe TDC group alone demonstrated a significant negative medial fronto-orbital CThick–SDepth correlation. Focal epilepsy participants with but not without psychiatric diagnoses showed significant positive pre-central and post-central CThick–SDepth associations not found in TDC. Although the history of prolonged seizures was significantly associated with the postcentral CThick–SDepth correlation, it was unrelated to the presence/absence of psychiatric diagnoses.ConclusionsAbnormal CThick–SDepth pre-central and post-central associations might be a psychopathology biomarker in paediatric focal epilepsy.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S15.1-S15
Author(s):  
Lezlie Espana ◽  
William McCuddy ◽  
Lindsay Nelson ◽  
Birn Rasmus ◽  
Andrew Mayer ◽  
...  

Few studies have examined the physiologic correlates of depressive symptoms following sport-related concussion (SRC), despite the prevalence of these symptoms following brain injury. We hypothesized that concussed athletes would have disrupted resting-state functional connectivity in emotional processing regions compared to controls, and that this disruption would be associated with greater post-concussion symptoms of depression. Forty-three concussed athletes at approximately 1 day (N = 34), 1 week (N = 34), and 1 month (N = 30) post-concussion were evaluated along with 51 healthy athletes assessed at a single visit. Resting-state fMRI was collected on a 3T GE scanner (TR = 2s); depressive symptoms were assessed using the Hamilton Rating Scale for Depression (HAM-D). Emotional processing regions of interest (ROI) were defined using an automated meta-analysis of brain regions associated with the term “emotion”. Fisher-Z transformed correlations were calculated between each ROI. A multivariate approach assessed connectivity by analyzing ROI as simultaneous response variables. Concussed athletes had significantly higher depressive symptoms relative to controls at all time points but showed partial recovery by 1-month post-concussion relative to earlier visits (p's< 0.05). Functional connectivity did not differ between controls and concussed athletes at 1 day or one-week post-concussion. However, concussed athletes had significantly different connectivity in regions associated with emotional processing at 1 month relative to 1 day post-concussion (p = 0.002), and relative to controls (p = 0.003). Follow-up analyses showed that increased connectivity between attention and default mode networks at 1-month post-concussion was common across both analyses. In addition, functional connectivity of emotional processing regions was significantly associated with depressive symptoms at 1 day (p = 0.003) and one-week post-concussion (p = 7 × 10-8), with greater HAM-D scores correlating with decreased connectivity between attention and default mode networks. These results suggest that intrinsic connectivity between default mode and attention regions following SRC may be compensatory in nature.


2016 ◽  
Vol 33 (S1) ◽  
pp. S45-S45 ◽  
Author(s):  
G. Wagner ◽  
C. Schachtzabel ◽  
G. Peikert ◽  
K.J. Bär

IntroductionPersistent pondering over negative self-related thoughts is a central feature of depressive psychopathology.ObjectivesIn the present study, we sought to investigate the neural correlates of abnormal negative self-referential processing (SRP) in patients with major depressive disorder (MDD) and its impact on subsequent cognitive control-related neuronal activation.AimsWe hypothesized aberrant activation dynamics during the period of negative and neutral SRP in the rostral anterior cingulate cortex (rACC) and in the amygdala in patients with MDD. We assumed abnormal activation in the fronto-cingulate network during Stroop task execution.MethodsNineteen depressed patients and 20 healthy controls participated in the study. Using an event-related fMRI design, negative, positive and neutral self-referential statements were displayed for 6.5s and followed by incongruent or congruent Stroop conditions.ResultsIn contrast to controls, patients did not exhibit valence-dependent rACC activation differences during SRP. A novel finding was the significant activation of the amygdala and the reward-processing network during presentation of neutral self-referential stimuli relative to baseline and to affective stimuli in patients. The fMRI analysis of the Stroop task revealed a reduced BOLD activation in the right frontoparietal network of patients in the incongruent condition after negative SRP only.ConclusionsThus, the inflexible activation in the rACC may correspond to the inability of depressed patients to shift their attention away from negative self-related stimuli. The accompanying negative affect and task-irrelevant emotional processing may compete for neuronal resources with cognitive control processes and lead thereby to deficient cognitive performance associated with decreased frontoparietal activation.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Li ◽  
Jianhao Yan ◽  
Hua Wen ◽  
Jinzhi Lin ◽  
Lianbao Liang ◽  
...  

AbstractNeuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia.


2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Salvatore Nigro ◽  
Benedetta Tafuri ◽  
Daniele Urso ◽  
Roberto De Blasi ◽  
Maria Elisa Frisullo ◽  
...  

Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.


2020 ◽  
Author(s):  
Stephen McCullough ◽  
Karen Emmorey

We investigated, using voxel-based morphometry (VBM), how deafness and sign language experience affect the anatomical structures of the human brain by comparing gray matter (GM) and white matter (WM) structures across congenitally deaf native signers, hearing native signers, and hearing sign-naïve controls (n = 90). We also compared the same groups on cortical thickness, surface area, and local gyrification using surface-based morphometry (SBM). Both VBM and SBM results revealed deafness-related changes in visual cortices and right frontal lobe. The GM in the auditory cortices did not appear to be affected by deafness; however, there was a significant WM reduction in left Heschl's gyrus for deaf signers only. The SBM comparisons revealed changes associated with lifelong signing experience: expansions in the surface area within left anterior temporal and left occipital lobes, and a reduction in cortical thickness in the right occipital lobe for deaf and hearing signers. Structural changes within these brain regions may be related to adaptations in the neural networks involved in processing signed language (i.e., visual perception of face and body movements). Hearing native signers also had unique neuroanatomical changes (e.g., reduced gyrification in premotor areas), perhaps due to lifelong experience with both a spoken and a signed language.


Sign in / Sign up

Export Citation Format

Share Document