scholarly journals Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Quentin M Dudley ◽  
Connor J Nash ◽  
Michael C Jewett

Abstract Isoprenoids are an attractive class of metabolites for enzymatic synthesis from renewable substrates. However, metabolic engineering of microorganisms for monoterpenoid production is limited by the need for time-consuming, and often non-intuitive, combinatorial tuning of biosynthetic pathway variations to meet design criteria. Towards alleviating this limitation, the goal of this work was to build a modular, cell-free platform for construction and testing of monoterpenoid pathways, using the fragrance and flavoring molecule limonene as a model. In this platform, multiple Escherichia coli lysates, each enriched with a single overexpressed pathway enzyme, are mixed to construct the full biosynthetic pathway. First, we show the ability to synthesize limonene from six enriched lysates with mevalonate substrate, an adenosine triphosphate (ATP) source, and cofactors. Next, we extend the pathway to use glucose as a substrate, which relies on native metabolism in the extract to convert glucose to acetyl-CoA along with three additional enzymes to convert acetyl-CoA to mevalonate. We find that the native E. coli farnesyl diphosphate synthase (IspA) is active in the lysate and diverts flux from the pathway intermediate geranyl pyrophospahte to farnesyl pyrophsophate and the byproduct farnesol. By adjusting the relative levels of cofactors NAD+, ATP and CoA, the system can synthesize 0.66 mM (90.2 mg l−1) limonene over 24 h, a productivity of 3.8 mg l−1 h−1. Our results highlight the flexibility of crude lysates to sustain complex metabolism and, by activating a glucose-to-limonene pathway with 9 heterologous enzymes encompassing 20 biosynthetic steps, expands an approach of using enzyme-enriched lysates for constructing, characterizing and prototyping enzymatic pathways.

2009 ◽  
Vol 75 (22) ◽  
pp. 7291-7293 ◽  
Author(s):  
Gopal Prasad Ghimire ◽  
Hei Chan Lee ◽  
Jae Kyung Sohng

ABSTRACT Putative hopanoid genes from Streptomyces peucetius were introduced into Escherichia coli to improve the production of squalene, an industrially important compound. High expression of hopA and hopB (encoding squalene/phytoene synthases) together with hopD (encoding farnesyl diphosphate synthase) yielded 4.1 mg/liter of squalene. This level was elevated to 11.8 mg/liter when there was also increased expression of dxs and idi, E. coli genes encoding 1-deoxy-d-xylulose 5-phosphate synthase and isopentenyl diphosphate isomerase.


2021 ◽  
Author(s):  
Yasuyuki Yamada ◽  
Miya Urui ◽  
Hidehiro Oki ◽  
Kai Inoue ◽  
Haruyuki Matsui ◽  
...  

AbstractMetabolic engineering of microorganisms to produce specialized plant metabolites has been established. However, these methods are limited by low productivity and the intracellular accumulation of metabolites. Here, we aimed to use transport engineering for producing reticuline, an important intermediate in the alkaloid biosynthetic pathway. We established a reticuline-producing Escherichia coli strain and introduced a multidrug and toxic compound extrusion transporter, Arabidopsis AtDTX1, into it. AtDTX1 was selected due to its suitable expression in E. coli and its reticuline-transport activity. Expression of AtDTX1 significantly enhanced reticuline production by 11-fold; produced reticuline was secreted into the medium. AtDTX1 expression conferred high plasmid stability, and up- or downregulated genes associated with biological processes including metabolic pathways for reticuline biosynthesis, leading to a high production and secretion of reticuline. The successful application of a transporter for alkaloid production suggests that the transport engineering approach may improve the biosynthesis of specialized metabolites via metabolic engineering.


2018 ◽  
Author(s):  
Huan Fang ◽  
Dong Li ◽  
Jie Kang ◽  
Pingtao Jiang ◽  
Jibin Sun ◽  
...  

ABSTRACTThe only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea, and the only unknown step in its biosynthesis is the production of the intermediate adenosylcobinamide phosphate. Here, using genetic and metabolic engineering, we generated an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. Excitingly, the BluE and CobC enzymes from Rhodobacter capsulatus transform L-threonine into (R)-1-Amino-2-propanol O-2-Phosphate, which is then condensed with adenosylcobyric acid to yield adenosylcobinamide phosphate by either CobD from the aeroic R. capsulatus or CbiB from the anerobic Salmonella typhimurium. These findings suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increased the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg/g DCW via metabolic engineering and optimization of fermentation conditions. Beyond our scientific insights about the aerobic and anaerobic pathways and our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Takahiro Kato ◽  
Jung-Bum Lee ◽  
Futoshi Taura ◽  
Fumiya Kurosaki

Two genes involved in δ-guaiene biosynthesis in Aquilaria microcarpa, δ-guaiene synthase (GS) and farnesyl diphosphate synthase (FPS), were overexpressed in Escherichia coli cells. Immunoblot analysis revealed that the concentration of GS-translated protein was rather low in the cells transformed by solely GS while appreciable accumulation of the recombinant protein was observed when GS was coexpressed with FPS GS-transformed cells liberated only a trace amount of δ-guaiene (0.004 μg/mL culture), however, the concentration of the compound elevated to 0.08 μg/mL culture in the cells transformed by GS plus FPS δ-Guaiene biosynthesis was markedly activated when E. coli cells coexpressing GS and FPS were incubated in enriched Terrific broth, and the content of the compound increased to approximately 0.6 μg/mL culture. These results suggest that coexpression of FPS and GS in E. coli is required for efficient 6-guaiene production in the bacterial cells, and the sesquiterpene-producing activity of the transformant is appreciably enhanced in the nutrients-enriched medium.


2016 ◽  
Vol 113 (12) ◽  
pp. 3209-3214 ◽  
Author(s):  
Bradley Walters Biggs ◽  
Chin Giaw Lim ◽  
Kristen Sagliani ◽  
Smriti Shankar ◽  
Gregory Stephanopoulos ◽  
...  

Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.


Author(s):  
Min Jae Kim ◽  
Myung Hyun Noh ◽  
Sunghwa Woo ◽  
Hyun Gyu Lim ◽  
Gyoo Yeol Jung

Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-D-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. Considering that the MEP pathway is closely related to the cell membrane and electron transport chain, the activities of the two enzymes of Vibrio sp. dhg were expected to be higher than the enzymes of E. coli. We found that Dxs and IspA in Vibrio sp. dhg exhibited 1.08-fold and 1.38-fold higher catalytic efficiencies, respectively. Consequently, the heterologous overexpression improved the specific lycopene production by 1.88-fold. Our findings could be widely utilized to enhance production of lycopene and other carotenoids.


2003 ◽  
Vol 185 (18) ◽  
pp. 5391-5397 ◽  
Author(s):  
Si Jae Park ◽  
Sang Yup Lee

ABSTRACT The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional β-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the β-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenning Liu ◽  
Xue Zhang ◽  
Dengwei Lei ◽  
Bin Qiao ◽  
Guang-Rong Zhao

Abstract Background 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. Results Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from l-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from l-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor l-phenylalanine and combined the upstream l-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. Conclusions We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


2001 ◽  
Vol 183 (21) ◽  
pp. 6466-6477 ◽  
Author(s):  
Christopher Kirkpatrick ◽  
Lisa M. Maurer ◽  
Nikki E. Oyelakin ◽  
Yuliya N. Yoncheva ◽  
Russell Maurer ◽  
...  

ABSTRACT Acetate and formate are major fermentation products ofEscherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-ptastrain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of theackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins.


2019 ◽  
Vol 476 (21) ◽  
pp. 3125-3139 ◽  
Author(s):  
Daniel Shiu-Hin Chan ◽  
Jeannine Hess ◽  
Elen Shaw ◽  
Christina Spry ◽  
Robert Starley ◽  
...  

Abstract CoaBC, part of the vital coenzyme A biosynthetic pathway in bacteria, has recently been validated as a promising antimicrobial target. In this work, we employed native ion mobility–mass spectrometry to gain structural insights into the phosphopantothenoylcysteine synthetase domain of E. coli CoaBC. Moreover, native mass spectrometry was validated as a screening tool to identify novel inhibitors of this enzyme, highlighting the utility and versatility of this technique both for structural biology and for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document