scholarly journals The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Suvi Sutela ◽  
Marco Forgia ◽  
Eeva J Vainio ◽  
Marco Chiapello ◽  
Stefania Daghino ◽  
...  

Abstract Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.

2019 ◽  
Vol 116 (21) ◽  
pp. 10518-10524 ◽  
Author(s):  
Jesse D. Pyle ◽  
Sean P. J. Whelan

Segmented negative-sense (SNS) RNA viruses initiate infection by delivering into cells a suite of genomic RNA segments, each sheathed by the viral nucleocapsid protein and bound by the RNA-dependent RNA-polymerase (RdRP). For the orthomyxovirus influenza and the bunyavirus La Crosse, the 5′ end of the genomic RNA binds as a hook-like structure proximal to the active site of the RdRP. Using an in vitro assay for the RNA-dependent RNA-polymerase (RdRP) of the arenavirus Machupo (MACV), we demonstrate that the 5′ genomic and antigenomic RNAs of both small and large genome segments stimulate activity in a promoter-specific manner. Functional probing of the activating RNAs identifies intramolecular base-pairing between positions +1 and +7 and a pseudotemplated 5′ terminal guanine residue as key for activation. Binding of structured 5′ RNAs is a conserved feature of all SNS RNA virus polymerases, implying that promoter-specific RdRP activation extends beyond the arenaviruses. The 5′ RNAs and the RNA binding pocket itself represent targets for therapeutic intervention.


2016 ◽  
Vol 90 (22) ◽  
pp. 10113-10119 ◽  
Author(s):  
Chelsea Severin ◽  
James R. Terrell ◽  
James R. Zengel ◽  
Robert Cox ◽  
Richard K. Plemper ◽  
...  

ABSTRACT In a negative-strand RNA virus, the genomic RNA is sequestered inside the nucleocapsid when the viral RNA-dependent RNA polymerase uses it as the template for viral RNA synthesis. It must require a conformational change in the nucleocapsid protein (N) to make the RNA accessible to the viral polymerase during this process. The structure of an empty mumps virus (MuV) nucleocapsid-like particle was determined to 10.4-Å resolution by cryo-electron microscopy (cryo-EM) image reconstruction. By modeling the crystal structure of parainfluenza virus 5 into the density, it was shown that the α-helix close to the RNA became flexible when RNA was removed. Point mutations in this helix resulted in loss of polymerase activities. Since the core of N is rigid in the nucleocapsid, we suggest that interactions between this region of the mumps virus N and its polymerase, instead of large N domain rotations, lead to exposure of the sequestered genomic RNA. IMPORTANCE Mumps virus (MuV) infection may cause serious diseases, including hearing loss, orchitis, oophoritis, mastitis, and pancreatitis. MuV is a negative-strand RNA virus, similar to rabies virus or Ebola virus, that has a unique mechanism of viral RNA synthesis. They all make their own RNA-dependent RNA polymerase (RdRp). The viral RdRp uses the genomic RNA inside the viral nucleocapsid as the template to synthesize viral RNAs. Since the template RNA is always sequestered in the nucleocapsid, the viral RdRp must find a way to open it up in order to gain access to the covered template. Our work reported here shows that a helix structural element in the MuV nucleocapsid protein becomes open when the sequestered RNA is released. The amino acids related to this helix are required for RdRp to synthesize viral RNA. We propose that the viral RdRp pulls this helix open to release the genomic RNA.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. eaba6605 ◽  
Author(s):  
Pierre-Marc Delaux ◽  
Sebastian Schornack

During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today’s continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.


2008 ◽  
Vol 82 (9) ◽  
pp. 4461-4470 ◽  
Author(s):  
Ranjit Warrier ◽  
Benjamin R. Linger ◽  
Barbara L. Golden ◽  
Richard J. Kuhn

ABSTRACT Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Nidhi Kaushik ◽  
Chandru Subramani ◽  
Saumya Anang ◽  
Rajagopalan Muthumohan ◽  
Shalimar ◽  
...  

ABSTRACT Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Natalie D. Collins ◽  
Andrew S. Beck ◽  
Steven G. Widen ◽  
Thomas G. Wood ◽  
Stephen Higgs ◽  
...  

ABSTRACT One paradigm to explain the complexity of viral RNA populations is that the low fidelity of the RNA-dependent RNA polymerase (RdRp) drives high mutation rates and consequently genetic diversity. Like most RNA viruses, wild-type yellow fever virus (YFV) replication is error-prone due to the lack of proofreading by the virus-encoded RdRp. However, there is evidence that replication of the live attenuated YF vaccine virus 17D, derived from wild-type strain Asibi, is less error-prone than wild-type RNA viruses. Recent studies comparing the genetic diversity of wild-type Asibi and 17D vaccine virus found that wild-type Asibi has the typical heterogeneous population of an RNA virus, while there is limited intra- and interpopulation variability of 17D vaccine virus. Utilizing chimeric and mutant infectious clone-derived viruses, we show that high and low genetic diversity profiles of wild-type Asibi virus and vaccine virus 17D, respectively, are multigenic. Introduction of either structural (pre-membrane and envelope) genes or NS2B or NS4B substitutions into the Asibi and 17D backbone resulted in altered variant population, nucleotide diversity, and mutation frequency compared to the parental viruses. Additionally, changes in genetic diversity of the chimeric and mutant viruses correlated with the phenotype of multiplication kinetics in human alveolar A549 cells. Overall, the paradigm that only the error-prone RdRp controls genetic diversity needs to be expanded to address the role of other genes in genetic diversity, and we hypothesize that it is the replication complex as a whole and not the RdRp alone that controls genetic diversity. IMPORTANCE With the advent of advanced sequencing technology, studies of RNA viruses have shown that genetic diversity can contribute to both attenuation and virulence and the paradigm is that this is controlled by the error-prone RNA-dependent RNA polymerase (RdRp). Since wild-type yellow fever virus (YFV) strain Asibi has genetic diversity typical of a wild-type RNA virus, while 17D virus vaccine has limited diversity, it provides a unique opportunity to investigate RNA population theory in the context of a well-characterized live attenuated vaccine. Utilizing infectious clone-derived viruses, we show that genetic diversity of RNA viruses is complex and that multiple genes, including structural genes and NS2B and NS4B genes also contribute to genetic diversity. We suggest that the replication complex as a whole, rather than only RdRp, drives genetic diversity, at least for YFV.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1738
Author(s):  
Alesia A. Levanova ◽  
Eeva J. Vainio ◽  
Jarkko Hantula ◽  
Minna M. Poranen

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


2020 ◽  
Author(s):  
Seung Cho Lee ◽  
Evan Ernst ◽  
Benjamin Berube ◽  
Filipe Borges ◽  
Jean-Sebastien Parent ◽  
...  

AbstractIn Arabidopsis, LTR-retrotransposons are activated by mutations in the chromatin remodeler DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21-22nt epigenetically activated siRNAs (easiRNAs) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like-particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. Next generation short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR-retrotransposons without the need for mapping transposition, and independent of genomic copy number. Linear replication intermediates of a functionally intact copia element EVADE revealed multiple central polypurine tracts (cPPT), a feature shared with HIV where cPPT promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon “suicide” by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR-retrotransposons, and their control at transcriptional, post-transcriptional and reverse transcriptional levels.


2021 ◽  
Author(s):  
Agustina P. Bertolin ◽  
Florian Weissmann ◽  
Jingkun Zeng ◽  
Viktor Posse ◽  
Jennifer C. Milligan ◽  
...  

SummaryThe coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologs in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer (FRET)-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified 3 novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


Sign in / Sign up

Export Citation Format

Share Document