scholarly journals Avian and serpentine endogenous foamy viruses, and new insights into the macroevolutionary history of foamy viruses

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Pakorn Aiewsakun

Abstract This study reports and characterises two novel distinct lineages of foamy viruses (FVs) in the forms of endogenous retroviruses (ERVs). Several closely related elements were found in the genome of oriental stork (Ciconia boyciana) and other was found in the genome of spine-bellied sea snake (Hydrophis hardwickii), designated ERV-Spuma.N-Cbo (where 'N' runs from one to thirteen) and ERV-Spuma.1-Hha, respectively. This discovery of avian and serpentine endogenous FVs adds snakes, and perhaps more crucially, birds to the list of currently known hosts of FVs, in addition to mammals, reptiles, amphibians, and fish. This indicates that FVs are, or at least were, capable of infecting all major lineages of vertebrates. Moreover, together with other FVs, phylogenetic analyses showed that both of them are most closely related to mammalian FVs. Further examination revealed that reptilian FVs form a deep paraphyletic group that is basal to mammalian and avian FVs, suggesting that there were multiple ancient FV cross-class transmissions among their hosts. Evolutionary timescales of various FV lineages were estimated in this study, in particular, the timescales of reptilian FVs and that of the clade of mammalian, avian, and serpentine FVs. This was accomplished by using the recently established time-dependent rate phenomenon models, inferred using mainly the knowledge of the co-speciation history between FVs and mammals. It was found that the estimated timescales matched very well with those of reptiles. Combined with the observed phylogenetic patterns, these results suggested that FVs likely co-speciated with ancient reptilian animals, but later jumped to a protomammal and/or a bird, which ultimately gave rise to mammalian and avian FVs. These results contribute to our understanding of FV emergence, specifically the emergence of mammalian and avian FVs, and provide new insights into how FVs co-evolved with their non-mammalian vertebrate hosts in the distant past.

Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 641 ◽  
Author(s):  
Pakorn Aiewsakun ◽  
Peter Simmonds ◽  
Aris Katzourakis

A recent study reported the discovery of an endogenous reptilian foamy virus (FV), termed ERV-Spuma-Spu, found in the genome of tuatara. Here, we report two novel reptilian foamy viruses also identified as endogenous FVs (EFVs) in the genomes of panther gecko (ERV-Spuma-Ppi) and Schlegel’s Japanese gecko (ERV-Spuma-Gja). Their presence indicates that FVs are capable of infecting reptiles in addition to mammals, amphibians, and fish. Numerous copies of full length ERV-Spuma-Spu elements were found in the tuatara genome littered with in-frame stop codons and transposable elements, suggesting that they are indeed endogenous and are not functional. ERV-Spuma-Ppi and ERV-Spuma-Gja, on the other hand, consist solely of a foamy virus-like env gene. Examination of host flanking sequences revealed that they are orthologous, and despite being more than 96 million years old, their env reading frames are fully coding competent with evidence for strong purifying selection to maintain expression and for them likely being transcriptionally active. These make them the oldest EFVs discovered thus far and the first documented EFVs that may have been co-opted for potential cellular functions. Phylogenetic analyses revealed a complex virus–host co-evolutionary history and cross-species transmission routes of ancient FVs.


2020 ◽  
Author(s):  
Anouk Willemsen ◽  
Ignacio G. Bravo

AbstractPapillomaviruses (PVs) have a wide host range, infecting mammals, birds, turtles, and snakes. The recent discovery of PVs in different fish species allows for a more complete reconstruction of the evolutionary history of the viral family. In this study we perform phylogenetic dating to analyse evolutionary events that occurred during PV evolution, as well as to estimate speciation and evolutionary rates.We have used four different data sets to explore and correct for potential biases that particular taxa combinations may introduce during molecular time inference. When considering the evolution of substitution rates we observed that short-term rate estimates are much higher than long-term rate estimates, also known as the time-dependent rate phenomenon. We discuss that for PVs the time-dependent evolutionary rates may reflect changes in the available host niches. When considering the evolution of viral branching events (as a proxy for speciation rates), we show that these are not constant through time, suggesting the occurrence of distinct evolutionary events such as adaptive radiations. In a joint analysis with host speciation rates, we identify at least four different evolutionary periods, demonstrating that the evolution of PVs is multiphasic, and refining the previously suggested biphasic evolutionary scenario.Thanks to the discovery of novel PVs in basal hosts and to the implementation of a time-dependent rate model for molecular dating, our results provide new insights into the evolutionary history of PVs. In this updated evolutionary scenario, ecological opportunity appears as one main driving force for the different radiation and key-innovation events we observe.


2018 ◽  
Author(s):  
Xiaoman Wei ◽  
Yicong Chen ◽  
Guangqian Duan ◽  
Edward C. Holmes ◽  
Jie Cui

AbstractEndogenous retroviruses (ERVs) can be thought of as host genomic fossils of ancient viruses. Foamy viruses, including those that form endogenous copies, provide strong evidence for virus-host co-divergence across the vertebrate phylogeny. Endogenous foamy viruses (EFV) have previously been discovered in mammals, amphibians and fish. Here we report a novel endogenous foamy virus, named SpuEFV, in genome of the tuatara (Sphenodon punctatus), an endangered reptile species endemic to New Zealand. Phylogenetic analyses revealed that SpuEFV has likely co-diverged with its host over a period of many millions of years. The discovery of SpuEFV fills a major gap in the fossil record of foamy viruses and provides important insights into the early evolution of retroviruses.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaoman Wei ◽  
Yicong Chen ◽  
Guangqian Duan ◽  
Edward C Holmes ◽  
Jie Cui

AbstractEndogenous retroviruses (ERVs) represent host genomic ‘fossils’ of ancient viruses. Foamy viruses, including those that form endogenous copies, provide strong evidence for virus-host co-divergence across the vertebrate phylogeny. Endogenous foamy viruses (EFVs) have previously been discovered in mammals, amphibians, and fish. Here we report a novel endogenous foamy virus, termed ERV-Spuma-Spu, in genome of the tuatara (Sphenodon punctatus), an endangered reptile species endemic to New Zealand. Phylogenetic analyses revealed that foamy viruses have likely co-diverged with their hosts over many millions of years. The discovery of ERV-Spuma-Spu fills a major gap in the fossil record of foamy viruses and provides important insights into the early evolution of retroviruses.


2016 ◽  
Vol 90 (16) ◽  
pp. 7184-7195 ◽  
Author(s):  
Pakorn Aiewsakun ◽  
Aris Katzourakis

ABSTRACTAmong the most fundamental questions in viral evolutionary biology are how fast viruses evolve and how evolutionary rates differ among viruses and fluctuate through time. Traditionally, viruses are loosely classed into two groups: slow-evolving DNA viruses and fast-evolving RNA viruses. As viral evolutionary rate estimates become more available, it appears that the rates are negatively correlated with the measurement timescales and that the boundary between the rates of DNA and RNA viruses might not be as clear as previously thought. In this study, we collected 396 viral evolutionary rate estimates across almost all viral genome types and replication strategies, and we examined their rate dynamics. We showed that the time-dependent rate phenomenon exists across multiple levels of viral taxonomy, from the Baltimore classification viral groups to genera. We also showed that, by taking the rate decay dynamics into account, a clear division between the rates of DNA and RNA viruses as well as reverse-transcribing viruses could be recovered. Surprisingly, despite large differences in their biology, our analyses suggested that the rate decay speed is independent of viral types and thus might be useful for better estimation of the evolutionary time scale of any virus. To illustrate this, we used our model to reestimate the evolutionary timescales of extant lentiviruses, which were previously suggested to be very young by standard phylogenetic analyses. Our analyses suggested that these viruses are millions of years old, in agreement with paleovirological evidence, and therefore, for the first time, reconciled molecular analyses of ancient and extant viruses.IMPORTANCEThis work provides direct evidence that viral evolutionary rate estimates decay with their measurement timescales and that the rate decay speeds do not differ significantly among viruses despite the vast differences in their molecular features. After adjustment for the rate decay dynamics, the division between the rates of double-stranded DNA (dsDNA), single-stranded RNA (ssRNA), and ssDNA/reverse-transcribing viruses could be seen more clearly than before. Our results provide a guideline for further improvement of the molecular clock. As a demonstration of this, we used our model to reestimate the timescales of modern lentiviruses, which were previously thought to be very young, and concluded that they are millions of years old. This result matches the estimate from paleovirological analyses, thus bridging the gap between ancient and extant viral evolutionary studies.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 383
Author(s):  
Kathleen Apakupakul ◽  
Sharon L. Deem ◽  
Rabia Maqsood ◽  
Peeti Sithiyopasakul ◽  
David Wang ◽  
...  

Studies of viruses that coevolved with lemurs provide an opportunity to understand the basal traits of primate viruses and provide an evolutionary context for host-virus interactions. Germline integration of endogenous retroviruses (ERVs) are fossil evidence of past infections. Hence, characterization of novel ERVs provides insight into the ancient precursors of extant viruses and the evolutionary history of their hosts. Here, we report the discovery of a novel endogenous retrovirus present in the genome of a lemur, Coquerel’s sifaka (Propithecus coquereli). Using next-generation sequencing, we identified and characterized the complete genome sequence of a retrovirus, named prosimian retrovirus 1 (PSRV1). Phylogenetic analyses indicate that PSRV1 is a gamma-type betaretrovirus basal to the other primate betaretroviruses and most closely related to simian retroviruses. Molecular clock analysis of PSRV1 long terminal repeat (LTR) sequences estimated the time of endogenization within 4.56 MYA (±2.4 MYA), placing it after the divergence of Propithecus species. These results indicate that PSRV1 is an important milestone of lemur evolution during the radiation of the Propithecus genus. These findings may have implications for both human and animal health in that the acquisition of a gamma-type env gene within an endogenized betaretrovirus could facilitate a cross-species jump between vertebrate class hosts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


Author(s):  
Yuan Fang ◽  
Ernest Tambo ◽  
Jing-Bo Xue ◽  
Yi Zhang ◽  
Xiao-Nong Zhou ◽  
...  

Abstract Gene mutations on target sites can be a valuable indicator of the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the brunt of dengue disease burden in Saudi Arabia. In the current study, six genotypes of three codon combinations (989, 1016, and 1534) were observed on voltage-gated sodium channel (VGSC) gene in Jeddah’s Aedes aegypti population, with PGF/PGC as the dominant one. Two types of introns between exon 20 and 21 on VGSC have been identified for the first time in Ae. aegypti in Saudi Arabia. Statistical and phylogenetic analyses showed that the intron type was significantly associated with the 1016 allele and may reflect the history of insecticide treatment in different continents. In addition, fixation of the L1014F allele on VGSC and G119S on acetylcholinesterase 1 gene was detected in local Culex quinquefasciatus populations, with frequencies of 95.24 and 100%, respectively. To the best of our knowledge, this is the first report of resistant-associated mutations in field-caught Cx. quinquefasciatus in Saudi Arabia. The high prevalence of insecticide resistance gene mutations in local primary mosquito vector species highlights the urgent need to carry out comprehensive insecticide resistance surveillance in Saudi Arabia.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document