scholarly journals Symptom Development in Response to Combined Infection of In Vitro-grown Lilium longiflorum with Pratylenchus penetrans and Soilborne Fungi Collected from Diseased Roots of Field-grown Lilies

Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 882-889 ◽  
Author(s):  
Dilip Lakshman ◽  
Paulo Vieira ◽  
Ruchi Pandey ◽  
Janet Slovin ◽  
Kathryn Kamo

Eight fungal isolates (ELRF 1 to 8) were recovered from necrotic roots of Easter lilies, Lilium longiflorum cv. Nellie White, grown in a field in the U.S. Pacific Northwest. The eight fungal isolates were identified by sequencing and molecular phylogenetic analyses based on their ITS rDNA region. Five isolates were identified as Fusarium oxysporum, two as F. tricinctum, and one as Rhizoctonia sp. AG-I. This constitutes the first report of Rhizoctonia sp. AG-I infecting lilies worldwide and the first report of F. tricinctum infecting lilies in the United States. To study and validate their pathogenicity, pure cultures of each isolate were used to infect the roots of Easter lily plants growing in vitro. In addition, Easter lily plants growing in vitro were infected either with or without Pratylenchus penetrans, the root lesion nematode, prior to placing a culture plug of fungus 1 cm from a lily root. Pratylenchus penetrans is a nematode species commonly found in the sampled fields. The presence of both nematode and Rhizoctonia sp. AG-I isolate ELRF 3 in infected lilies was evaluated by molecular analyses, confirming the infection of roots 3 days after inoculation, prior to development of disease symptoms. Necrosis and root rot developed more rapidly with all eight fungal isolates when there had been prior infection with P. penetrans, the major nematode parasitizing Easter lily roots in the field in Oregon.

Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 866-875 ◽  
Author(s):  
Deana L. Baucom ◽  
Marie Romero ◽  
Robert Belfon ◽  
Rebecca Creamer

New species of Undifilum , from locoweeds Astragalus lentiginosus Vitman and Astragalus mollissimus Torr., are described using morphological characteristics and molecular phylogenetic analyses as Undifilum fulvum Baucom & Creamer sp. nov. and Undifilum cinereum Baucom & Creamer sp. nov. Fungi were isolated from dried plants of A. lentiginosus var. araneosus , diphysus , lentiginosus , and wahweapensis collected from Arizona, Oregon, and Utah, USA, and A. mollissimus var. biglovii , earleii , and mollissimus collected from New Mexico, Oklahoma, and Texas, USA. Endophytic fungi from Astragalus locoweeds were compared to Undifilum oxytropis isolates obtained from dried plant material of Oxytropis lamberteii from New Mexico and Oxytropis sericea from Arizona, Colorado, New Mexico, Utah, and Wyoming. Extremely slow growth in vitro was observed for all, and conidia, if present, were ellipsoid with transverse septa. However, in vitro color, growth on four different media, and conidium size differed between fungi from Astragalus spp. and U. oxytropis. Neighbor-joining analyses of internal transcribed spacer (ITS) region and glyceraldehyde-3-phosphate dehydrogenase (GPD) gene sequences revealed that U. fulvum and U. cinereum formed a clade distinct from U. oxytropis. This was supported by neighbor-joining analyses of results generated from random amplified polymorphic DNA (RAPD) fragments using two different primers.


2021 ◽  
Author(s):  
Mingming Yang ◽  
Linda S Thomashow ◽  
David M Weller

Pseudomonas brassicacearum Q8r1-96 and other 2,4-diacetylphloroglucinol (DAPG)-producing pseudomonads of the Pseudomonas fluorescens complex possess both biocontrol and growth-promoting properties and play an important role in suppression of take-all of wheat in the Pacific Northwest (PNW) of the United States. However, P. brassicacearum can also reduce seed germination and cause root necrosis on some wheat cultivars. We evaluated the effect of Q8r1-96 and DAPG on the germination of 69 wheat cultivars that have been or currently are grown in the PNW. Cultivars varied widely in their ability to tolerate P. brassicacearum or DAPG. The frequency of germination of the cultivars ranged from 0 to 0.87 and from 0.47 to 0.90 when treated with Q8r1-96 and DAPG, respectively. There was a significant positive correlation between the frequency of germination of cultivars treated with Q8r1-96 in assays conducted in vitro and in the greenhouse. The correlation was greater for spring than for winter cultivars. In contrast, the effect of Q8r1-96 on seed germination was not correlated with that of DAPG alone, suggesting that DAPG is not the only factor responsible for the phytotoxicity of Q8r1-96. Three wheat cultivars with the greatest tolerance and three cultivars with the least tolerance to Q8r1-96 were tested for their ability to support root colonization by strain Q8r1-96. Cultivars with the greatest tolerance supported significantly greater populations of strain Q8r1-96 than those with the least tolerance to the bacteria. Our results show that wheat cultivars differ widely in their interaction with P. brassicacearum and the biocontrol antibiotic DAPG.


Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 478-478 ◽  
Author(s):  
L. Mostert ◽  
W. Bester ◽  
T. Jensen ◽  
S. Coertze ◽  
A. van Hoorn ◽  
...  

Southern highbush blueberry plants (Vaccinium corymbosum interspecific hybrids) showing rust-like symptoms were observed in July 2006 in Porterville in the Western Cape (WC), South Africa. Diseased plants were also found in Villiersdorp and George in the WC in 2007. In 2008, symptoms were observed in George, and in 2009, in all the previous reported areas. Cvs. Bluecrisp, Emerald, Jewel, Sharpblue, and Star were infected. Reddish-to-brown spots appeared on the adaxial surface of leaves and developed into yellow-to-orange erumpent uredinia with pulverulent urediniospores. Uredinia were hypophyllous, dome shaped, 113 to 750 μm wide, and occasionally coalescing. Urediniospores were broadly obovate, sometimes ellipsoidal or pyriform, with yellowish orange content, and measured 19 to 27 × 12 to 20 μm (average 24 × 15 μm, n = 30). Spore walls were echinulate, hyaline, 1 to 1.5 μm thick, and with obscure germ pores. No telia or teliospores were observed. Voucher specimens were lodged in the South African National Fungus Collection in Pretoria (PREM 60245). The isolate was initially identified as Thekopsora minima P. Syd. & Syd., based primarily on the absence of conspicuous ostiolar cells characteristic of Naohidemyces spp. (3). Genomic DNA was extracted from urediniospores. Approximately 1,400 bp were amplified spanning the 5.8S, ITS2, and 28S large subunit of the ribosomal DNA (1). The sequence (GU355675) shared 96% (907 of 942 bp; GenBank AF522180) and 94% (1,014 of 1,047 bp; GenBank DQ354563) similarities in the 28S portion, respectively, to those of Naohidemyces vaccinii (Wint.) Sato, Katsuya et Y. Hiratsuka and Pucciniastrum geoppertianum (Kuehn) Kleb, two of the three known rust species of blueberry (2). Although no sequences of T. minima were available for direct comparison, phylogenetic analyses of the 28S region strongly supported the South African blueberry rust as congeneric with T. guttata (J. Schröt.) P. Syd. & Syd. (GenBank AF426231) and T. symphyti (Bubák) Berndt (GenBank AF26230) (data not shown). Four 6-month-old cv. Sharpblue plants were inoculated with a suspension (approximate final concentration of 1 × 105 spores per ml) of fresh urediniospores in a water solution with 0.05% Tween 20. After incubation at 20°C for 48 h under continuous fluorescent lighting, the plants were grown in a glasshouse (18/25°C night/day temperatures). Identical uredinia and symptoms developed approximately 3 weeks after inoculation on the inoculated plants, but not on two control plants of cv. Sharpblue sprayed with distilled water and kept at the same conditions. The alternate host hemlock (Tsuga spp.) is not endemic to South Africa and not sold as an ornamental plant according to a large conifer nursery. Hosts of T. minima include Gaylussacia baccata, G. frondosa, Lyonia neziki, Menziesia pilosa, Rhododendron canadense, R. canescens, R. lutescens R. ponticum, R. prunifolium, R. viscosum, V. angustifolium var. laevifolium, V. corumbosum, and V. erythrocarpon (3). Visual inspection of possible hosts in the gardens in close proximity of Vaccinium production areas did not show any rust symptoms. To our knowledge, this is the first report of T. minima on blueberries outside of Asia and the United States (2). References: (1) M. C. Aime. Mycoscience 47:112, 2006. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. USDA-ARS, 2009. (3) S. Sato et al. Trans. Mycol. Soc. Jpn. 34:47, 1993.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 423-423 ◽  
Author(s):  
S. Uppala ◽  
B. M. Wu ◽  
T. N. Temple

Utah sweetvetch (Hedysarum boreale Nutt.) is a native American perennial nitrogen fixing legume used mainly in rangeland reclamation, soil rejuvenation, and erosion control. In June 2011, a field of Utah sweetvetch grown for seeds in central Oregon had approximately 15% of the plants exhibiting chlorosis, defoliation, stunting, wilting, and/or death. Dissection of the crown of symptomatic plants revealed discolored pinkish brown vascular tissue. Symptomatic tissues from six random plants were surface sterilized, placed on acidified potato dextrose agar (PDA) medium, and cultured for 7 days at room temperature, which allowed six fungal isolates (SS1 through SS6) to be collected. On PDA, all six isolates had rapid, creamy white colored growth. Based on observations of 1-week-old isolates, microconidia were oval to kidney shaped, single celled, 8 to 10 × 2.5 to 4 μm, and formed at the tips of long unbranched monophialides. Macroconidia were three to four septate, cylindrical to slightly curved, with characteristic foot shaped basal cell and blunt apical cell, 37 to 49 × 4.4 to 5.3 μm. Chlaymydospores observed were 8.5 to 11 × 7.6 to 9 μm. Based on fungal references (1,2,3), the isolates were identified as Fusarium solani (Mart.) Sacc. Identification of the isolates at the molecular level was determined by amplification of the internal transcribed spacer (ITS) region using PCR and amplicon sequencing. Botrytis cinerea and F. graminearum cultures were used as controls for the extraction, amplification, and sequencing steps. Genomic DNA was extracted from mycelia using protocols of the MOBIO Ultraclean Soil DNA Isolation Kit (MO-BIO Laboratories Inc, Carlsbad, CA, USA). PCR was performed using ITS1/ITS4 primers and resulted in 563- to 573-bp amplicons, which were sequenced. Analysis of the ITS sequences (GenBank Accession Nos. JX524018 to JX524023) for the six fungal isolates using BLASTn revealed a 99% sequence identity with F. solani strains (AB470903, AB513851, AJ608989, EF152426, EU029589, and HM214456). Pathogenicity was confirmed on Utah sweetvetch plants in the greenhouse. Seeds of Utah sweetvetch were first plated on acidified PDA for germination; healthy seedlings were then selected and transplanted into pots with sterilized soil after 2 weeks of growth. The plants were kept in a greenhouse at Central Oregon Agricultural Research Center, Madras, Oregon. Ten 40-day-old healthy vetch plants were inoculated by drenching with a mixed conidial suspension (107 conidia/ml) of the six F. solani isolates. Ten plants drenched with sterile distilled water were included as controls. Symptoms of chlorosis and stunting similar to those in the commercial field were observed within 30 days of inoculation on 8 of 10 inoculated plants, while control plants were symptomless. Fungal isolates identical to F. solani were reisolated from the symptomatic plants. To our knowledge, this is the first report of F. solani on Utah sweetvetch plants. References: (1) C. Booth. The Genus Fusarium. CMI, Kew, Surrey, UK, 1971. (2) P. E. Nelson et al. Fusarium species: An illustrated manual for identification. The Pennsylvania State University Press, USA, 1983. (3) H. I. Nirenberg. A simplified method for identifying Fusarium spp. occurring on wheat. Can. J. Bot. 59:1599, 1980.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 207-207 ◽  
Author(s):  
R. E. Ingham ◽  
P. B. Hamm ◽  
E. Riga ◽  
K. J. Merrifield

The root-lesion nematode, Pratylenchus penetrans (de Man, 1880) Filipjev, 1936, is a common pathogen of potato in the United States east of the Rocky Mountains and frequently interacts with Verticillium dahliae to aggravate early dying disease (4). West of the Rocky Mountains, P. penetrans is associated with numerous crops including mint, tree, and small fruits but is rarely recovered from potato fields. Pratylenchus neglectus is a common plant-parasitic nematode on potato in the west, but causes little loss in yield and does not usually interact with V. dahliae (1). Management of P. neglectus is generally unnecessary; although a population of P. neglectus from Ontario, Canada appears to be more pathogenic and does interact with V. dahliae (1). During May 2003 (6 weeks after planting), large areas of stunted plants were observed in field inspections and in aerial photographs of two fields (50.6 ha) of cv. Ranger Russet in Benton County, Washington. Lower roots and stolons had numerous, dark lesions that are typical of P. penetrans damage and were severely stunted, while long, white roots had formed abnormally near the soil surface. In early May 2003, lesion nematodes (65 nematodes per 250 g of dry soil and 810 nematodes per g of fresh root weight) recovered from these potato fields were identified as P. penetrans on the basis of morphological characters (2,3). The crop responded to oxamyl (four applications at 1.1 kg of a.i. per ha between early May and mid-July), but the grower estimated that yields were 1.62 tons/ha (4 tons/acre) less than in comparable unaffected fields. To our knoweldge, this is the first report of severe damage to potato from P. penetrans in the Colombia Basin potato-production area. Soil fumigation with Telone II (1,3-dichloropropene) is commonly used in the Columbia Basin to control root-knot (Meloidogyne chitwoodi and M. hapla) and stubby-root (Paratrichodorus allius) nematodes, and metam sodium is used to control V. dahliae. However, since the only nematode recovered from preplant samples was assumed to be P. neglectus, and because cv. Ranger Russet is relatively tolerant to V. dahliae, no fumigant was used in these fields. An increase in mint production in this area may be responsible for introducing P. penetrans into previously uninfested fields since mint is propagated vegetatively and lesion nematodes are commonly associated with mint and could be easily spread in planting material and adhering soil. Identification of P. penetrans in stunted corn from two nearby fields during 2004 suggests that this nematode may be a new and emerging problem in this area. The Columbia Basin is one of the largest potato-producing regions in the United States, and widespread introduction of P. penetrans could add substantial cost to potato production in this area. References: (1) K. Mukerji. No. 458 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1975. (2) H. Scheck and S. Koike. Plant Dis. 83:877, 1999.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 128-128 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

In December 1996 and January 1997, powdery mildew was observed on potted poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants in Monterey County, CA. Mycelia were observed on stems, petioles, mature and immature leaves, and bracts. Severely diseased leaves became twisted and bent and senesced prematurely. The white mycelia were conspicuous, epiphytic, and amphigenous; hyphae measured 4.6 to 6.9 μm in diameter. Growth initially was in patches but eventually became effused. Appressoria were slightly lobed to lobed and sometimes opposite. Conidiophore foot cells were cylindrical, sometimes bent at the base, and slightly flexuous to flexuous. Foot cells measured 30.0 to 46.2 μm × 5.8 to 6.9 μm and were followed by one to two shorter cells. Conidia were cylindrical to slightly doliform and measured 25.4 to 32.3 μm × 11.6 to 18.5 μm. The length-to-width ratios of conidia generally were greater than 2.0. Conidia were produced singly, placing the fungus in the Pseudoidium-type powdery mildew group. Conidia germinated at the ends, and no fibrosin bodies were observed. Cleistothecia were not found. The fungus was identified as an Oidium species. Pathogenicity was demonstrated by gently pressing infected leaves having abundant sporulation onto leaves of potted poinsettia plants (cvs. Freedom Red, Peter Star Marble, and Nutcracker White), incubating the plants in a moist chamber for 48 h, and then maintaining plants in a greenhouse. After 12 to 14 days, powdery mildew colonies developed on the inoculated plants, and the pathogen was morphologically identical to the original isolates. Uninoculated control plants did not develop powdery mildew. This is the first report of powdery mildew on poinsettia in California. This fungus appears similar to Microsphaera euphorbiae but has longer, slightly flexuous foot cells that do not match the description for M. euphorbiae (1,2). An alternative identification would be Erysiphe euphorbiae; however, there are no available mitosporic descriptions for morphological comparisons (1,2). In the United States, powdery mildew of poinsettia previously has been reported in various states in the Pacific Northwest, Midwest, and Northeast. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1250-1250 ◽  
Author(s):  
T. Mekuria ◽  
R. R. Martin ◽  
R. A. Naidu

Grapevine fanleaf virus (GFLV; genus Nepovirus, family Comoviridae), responsible for fanleaf degeneration disease, is one of the most important viruses of grapevines worldwide (1). During our reconnaissance studies during 2007, dormant wood cuttings from individual grapevines of wine grape cv. Chardonnay were collected randomly from two geographically separate vineyards in eastern Washington State. Extracts made from cambial scrapings of these cuttings were tested separately for different viruses by single-tube reverse transcription (RT)-PCR using virus-specific primers. Two of the thirty-one grapevines in one vineyard tested positive for GLFV as mixed infection with Grapevine leafroll-associated virus (GLRaV)-3. In another vineyard, six of the twenty-six grapevines tested positive for GFLV as mixed infection with GLRaV-1, GLRaV-3, and Grapevine virus A (GVA) A forward primer (5′-ACCGGATTGACGTGGGTGAT, corresponding to nucleotides [nt] 2231–2250) and reverse primer (5′-CCAAAGTTGGTTTCCCAAGA, complementary to nt 2533–2552) specific to RNA-2 of GFLV-F13 isolate (GenBank Accession No. X16907) were used in RT-PCR assays for the detection of GFLV (4). Primers used for RT-PCR detection of GLRaV-1, GLRaV-2, and GVA were described in Martin et al (2) and Minafra et al (3). The RT-PCR results indicated mixed infection of GFLV with GLRaV-1, GLRaV-3, and GVA. To confirm the presence of GFLV, the 322-bp sequence representing a portion of the coat protein encoded by RNA-2 genomic segment was cloned into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Amplicons obtained from six individual grapevines in the two vineyards were used for cloning. Three independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 99 to 100% nucleotide sequence identity among themselves, indicating that GFLV isolates from the two vineyards may be identical. A comparison of the consensus sequence (GenBank Accession No. EU573307) with corresponding sequences of other GFLVs deposited in GenBank showed 89 to 91% identity at the nucleotide level and 95 to 99% identity at the amino acid level. However, mixed infection of GFLV with different viruses in the two vineyards suggests separate introduction of the planting material. ELISA with GFLV-specific antibodies further confirmed the presence of the virus in samples that were positive in RT-PCR. To our knowledge, this is the first report of GFLV in grapevines grown in the Pacific Northwest states of the United States. Further investigations are being carried out on the distribution, symptoms, molecular variability, and nematode vector transmission of GFLV. References: (1) P. Andret-Link et al. J. Plant Pathol. 86:183, 2004. (2) R. R. Martin et al. Plant Dis. 89:763, 2005. (3) A. Minafra et al. Arch. Virol. 142:417, 1997 (4) A. Rowhani et al. Phytopathology 83:749, 1993.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1044-1044 ◽  
Author(s):  
M. Scandiani ◽  
D. Ruberti ◽  
K. O'Donnell ◽  
T. Aoki ◽  
R. Pioli ◽  
...  

Sudden death syndrome (SDS) of soybean was detected initially in Argentina during 1991-1992 in the Pampas Region and 1992-1993 in the Northwest Region. The first report of the fulfillment of Koch's postulates of SDS caused by Fusarium solani f. sp. glycines in Argentina was published in 2003 (3). Subsequently, analyses have shown that F. solani f. sp. glycines represents several morphologically and phylogenetically distinct species, including F. tucumaniae in Argentina and F. virguliforme in the United States (1). Isolations were made from plants that exhibited typical SDS symptoms (interveinal foliar chlorosis and necrosis leading to defoliation of the leaflets but not the petioles) from fields in Santa Fe and Buenos Aires provinces in 2001, 2002, and 2003. To determine which species are responsible for SDS in Argentina, cultures of eight slow growing isolates that developed bluish pigmentation and produced abundant macroconidia in sporodochia on potato dextrose agar were subjected to morphological and molecular phylogenetic analyses and pathogenicity tests. Morphological analyses demonstrated that three of the isolates were F. virguliforme and five were F. tucumaniae. Isolates of F. tucumaniae produced long and narrow sporodochial conidia while F. virguliforme produced diagnostic comma-shaped conidia. Molecular phylogenetic analyses of DNA sequences from multiple loci confirmed morphology-based identifications and showed that the soybean SDS pathogen in the United States, F. virguliforme, was also present in Argentina. To our knowledge, this is the first report of F. virguliforme in Argentina and of this pathogen outside the United States. Five isolates of F. tucumaniae and three isolates of F. virguliforme were used for pathogenicity tests. F. virguliforme isolate 171 provided by J. Rupe (University of Arkansas, Fayetteville) was used as a positive control. Soybean cultivars Ripley, RA 702, Pioneer 9492RR, Spencer, and A-6445RG were inoculated with each of the isolates tested in a greenhouse assay using soil infestation and toothpick methods (2). All eight isolates produced typical foliar SDS symptoms 15 to 25 days after inoculation. Severity of foliar symptoms averaged 3.3 for F. virguliforme, 2.6 for F. tucumaniae, and 3.3 for the positive control using a disease severity scale in which 1 = no symptoms and 5 = severely infected or dead plants. Under these conditions, F. virguliforme appeared to be more virulent than F tucumaniae. Noninoculated plants remained symptomless. Koch's postulates were confirmed with soybean cultivars RA 702 and A6445RG. Isolates recovered from symptomatic plants inoculated by the soil infestation and toothpick methods were identical to those used to inoculate the plant. Strains were recovered at frequencies of 100 and 60% from plants inoculated by the toothpick and soil infestation methods, respectively. To our knowledge, this is the first report of the fulfillment of Koch's postulates for F. tucumaniae and F. virguliforme in Argentina. References: (1) T. Aoki et al. Mycologia 95:660, 2003. (2) K. W. Roy et al. Plant Dis. 81:1100, 1997 (3) M. Scandiani et al. Plant Dis. 87:447, 2003.


2017 ◽  
Vol 18 (2) ◽  
pp. 84-86
Author(s):  
Shawn C. Kenaley ◽  
Geoffrey Ecker ◽  
Gary C. Bergstrom

Field symptoms, host distribution, pathogen morphology, and phylogenetic analyses clearly demonstrated that the rust fungus infecting alder buckthorn in Connecticut is Puccinia coronata var. coronata sensu stricto. To our knowledge, this is the first report and confirmation of P. coronata var. coronata s.s. in the United States. Additional collections from purported aecial and telial hosts of P. coronata var. coronata s.s. are necessary to determine its host range, geographic distribution, and incidence within the United States and elsewhere in North America.


Nematology ◽  
2006 ◽  
Vol 8 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Nathalie Wuyts ◽  
Rony Swennen ◽  
Dirk De Waele

AbstractPlants produce a wide range of biologically active chemicals which have been extensively explored for nematode-antagonistic properties. Although phenylpropanoids are part of the chemical defence system of plants against pests and diseases, including parasitic nematodes, no comprehensive study exists which relates (levels of) phenylpropanoid compounds in roots to actual effects on nematode behaviour. Therefore, a broad spectrum evaluation was made of the effects of phenylpropanoids (simple phenolics and flavonoids) and selected monoterpenoids and alkaloids on the behaviour of the migratory endoparasites Radopholus similis and Pratylenchus penetrans and the sedentary endoparasite Meloidogyne incognita. In vitro bioassays assessed effects on chemotaxis, motility, viability and hatch. Compared with the other two nematode species, P. penetrans was remarkably insensitive to the test compounds. Only phloretin was (limited) hatch inhibitive. This property was shared by other chalcone-related compounds for R. similis. Repellents and motility inhibitors for R. similis and M. incognita were found among the simple phenolic compounds. Flavonols stood out as repellent compounds for both these nematode species, while they were, in their degraded form, also motility inhibitors for M. incognita. Dopamine was an attractant for R. similis, while ferulic acid was strongly motility inhibitive and toxic (LC50 of 120 μg ml−1) for this nematode species. Salicylic acid was a strong attractant for M. incognita. The compound was also nematicidal (LC50 of 46 μg ml−1) and an irreversible inhibitor of hatch.


Sign in / Sign up

Export Citation Format

Share Document