scholarly journals Genomic Analysis, Sequence Diversity, and Occurrence of Apple necrotic mosaic virus, a Novel Ilarvirus Associated with Mosaic Disease of Apple Trees in China

Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1841-1847 ◽  
Author(s):  
Fei Xing ◽  
Berhanu Lemma Robe ◽  
Zhixiang Zhang ◽  
Hongqing Wang ◽  
Shifang Li

China accounts for over 50% of apple production worldwide. Very recently, a novel ilarvirus, Apple necrotic mosaic virus (ApNMV), was isolated from apple trees showing mosaic symptoms in Japan. This study compared different types of mosaic symptoms observed in apple trees in China under field conditions. Complete nucleotide sequences were obtained for six isolates of ApNMV. The genomic components varied in size from 3,378 to 3,380 nt (RNA1), 2,778 to 2,786 nt (RNA2), and 1,909 to 1,955 nt (RNA3), respectively. Although nucleotide sequence similarities with subgroup 3 ilarviruses were low (49.2 to 64.3%), results of phylogenetic analysis indicated that Chinese ApNMV isolates were clustered in subgroup 3 together with Prunus necrotic ring spot virus (PNRSV) and Apple mosaic virus (ApMV). Apple mosaic disease occurred widely in apple producing areas of China with a very high percentage (92.1%, 268 out of 291) of symptomatic trees being infected with ApNMV but not with ApMV. The data suggested that ApNMV might be the main pathogen causing apple mosaic disease in China. The genomes of the six studied Chinese ApNMV isolates demonstrated substantial sequence diversity. Here, we demonstrated a strong association of ApNMV with the mosaic disease of apple trees in China.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
Wensen Shi ◽  
Rundong Yao ◽  
Runze Sunwu ◽  
Kui Huang ◽  
Zhibin Liu ◽  
...  

Apple mosaic disease has a great influence on apple production. In this study, an investigation into the incidence of apple mosaic disease in southwest China was performed, and the pathogen associated with the disease was detected. The results show that 2869 apple trees with mosaic disease were found in the Sichuan, Yunnan, and Guizhou Provinces, with an average incidence of 9.6%. Although apple mosaic virus (ApMV) is widespread in apples worldwide, the diseased samples were negative when tested for ApMV. However, a novel ilarvirus (apple necrotic mosaic virus, ApNMV) was identified in mosaic apple leaves which tested negative for ApMV. RT-PCR analysis indicated that ApNMV was detected in 322 out of 357 samples with mosaic symptoms. Phylogenetic analysis of coat protein (CP) sequences of ApNMV isolates suggested that, compared with ApMV, ApNMV was closer to prunus necrotic ringspot virus (PNRSV). The CP sequences of the isolates showed the diversity of ApNMV, which may enable the virus to adapt to the changeable environments. In addition, the pathology of mosaic disease was observed by microscope, and the result showed that the arrangement of the tissue and the shape of the cell, including the organelle, were seriously destroyed or drastically changed.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Saengsoon Charoenvilaisiri ◽  
Channarong Seepiban ◽  
Mallika Kumpoosiri ◽  
Sombat Rukpratanporn ◽  
Nuchnard Warin ◽  
...  

Abstract Background Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody-based immunoassay for the detection of Sri Lankan cassava mosaic virus (SLCMV), the only cassava mosaic begomovirus currently causing CMD outbreaks in Southeast Asia (SEA). Methods Monoclonal antibodies (MAbs) against the recombinant coat protein of SLCMV were generated using hybridoma technology. MAbs were characterized and used to develop a triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) for SLCMV detection in cassava leaves and stems. Assay specificity, sensitivity and efficiency for SLCMV detection was investigated and compared to those of a commercial ELISA test kit and PCR, the gold standard. Results A TAS-ELISA for SLCMV detection was successfully developed using the newly established MAb 29B3 and an in-house polyclonal antibody (PAb) against begomoviruses, PAb PK. The assay was able to detect SLCMV in leaves, green bark from cassava stem tips, and young leaf sprouts from stem cuttings of SLCMV-infected cassava plants without cross-reactivity to those derived from healthy cassava controls. Sensitivity comparison using serial dilutions of SLCMV-infected cassava sap extracts revealed that the assay was 256-fold more sensitive than a commercial TAS-ELISA kit and 64-fold less sensitive than PCR using previously published SLCMV-specific primers. In terms of DNA content, our assay demonstrated a limit of detection of 2.21 to 4.08 × 106 virus copies as determined by quantitative real-time PCR (qPCR). When applied to field samples (n = 490), the TAS-ELISA showed high accuracy (99.6%), specificity (100%), and sensitivity (98.2%) relative to the results obtained by the reference PCR. SLCMV infecting chaya (Cnidoscolus aconitifolius) and coral plant (Jatropha multifida) was also reported for the first time in SEA. Conclusions Our findings suggest that the TAS-ELISA for SLCMV detection developed in this study can serve as an attractive tool for efficient, inexpensive and high-throughput detection of SLCMV and can be applied to CMD screening of cassava stem cuttings, large-scale surveillance, and screening for resistance.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Aditya Pratap ◽  
Rakesh Pandey ◽  
Shalini Purwar ◽  
...  

Yellow mosaic disease (YMD) affects several types of leguminous crops, including the Vigna species, which comprises a number of commercially important pulse crops. YMD is characterized by the formation of a bright yellow mosaic pattern on the leaves; in severe forms, this pattern can also be seen on stems and pods. This disease leads to tremendous yield losses, even up to 100%, in addition to deterioration in seed quality. Symptoms of this disease are similar among affected plants; YMD is not limited to mungbean (Vigna radiata L. Wilczek) and also affects other collateral and alternate hosts. In the last decade, rapid advancements in molecular detection techniques have been made, leading to an improved understanding of YMD-causing viruses. Three distinct bipartite begomoviruses, namely, Mungbean Yellow Mosaic India Virus (MYMIV), Mungbean Yellow Mosaic Virus (MYMV), and Horsegram Yellow Mosaic Virus (HgYMV), are known to cause YMD in Vigna spp. Vigna crops serve as an excellent protein source for vegetarians worldwide; moreover, they aid in improving soil health by fixing atmospheric nitrogen through a symbiotic association with Rhizobium bacteria. The loss in the yield of these short-duration crops due to YMD, thus, needs to be checked. This review highlights the discoveries that have been made regarding various aspects of YMD affecting mungbean, including the determination of YMD-causing viruses and strategies used to develop high-yielding YMD-resistant mungbean varieties that harness the potential of related Vigna species through the use of different omics approaches.


Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 264-271 ◽  
Author(s):  
D. J. Colgan ◽  
D. A. Willcocks

Plasmid preparations were made from 110 isolates of Enterobacter cloacae taken from the guts of members of the Caledia captiva complex of grasshoppers to ascertain whether a relationship exists between these extrachromosomal elements and taxonomic variation in the grasshoppers themselves. Fifty-two plasmids, distinguishable by mobility or restriction fragment pattern differences, were identified. Thirty-seven of these were similar in size. Five plasmids were nick translated and used to probe Southern blots. Only three instances of cross homology with another plasmid were found, implying a very high level of sequence diversity in the samples. No explanation of the size uniformity and sequence diversity of the plasmids is entirely satisfactory but it appears most likely that the variation is maintained to serve a variety of adaptive functions. No plasmid was found in grasshoppers of more than one taxon of C. captiva. This may be due to geographical limitations on the distribution of plasmids. If this is so, it remains possible that there is an association of one or more plasmids with taxonomic divergence in this grasshopper complex. Plasmid preparations were also made from 68 bacterial isolates (predominantly E. aerogenes) from laboratory-reared Locusta migratoria and from 72 isolates from other acridid grasshoppers. Plasmids of the size general in C. captiva were discovered in most of these isolates. Some smaller plasmids were also found. As judged by restriction endonuclease digests and Southern blotting, plasmid diversity is much less in this sample of L. migratoria bacteria than in the field-collected C. captiva. The plasmids reported in this paper may be considered as possible vectors for use in the genetic control of locusts. Key words: host–parasite, plasmids, grasshoppers, Enterobacter.


1999 ◽  
Vol 354 (1383) ◽  
pp. 521-529 ◽  
Author(s):  
B. D. Harrison ◽  
T. M. A. Wilson

Beijerinck's (1898) recognition that the cause of tobacco mosaic disease was a novel kind of pathogen became the breakthrough which led eventually to the establishment of virology as a science. Research on this agent, tobacco mosaic virus (TMV), has continued to be at the forefront of virology for the past century. After an initial phase, in which numerous biological properties of TMV were discovered, its particles were the first shown to consist of RNA and protein, and X–ray diffraction analysis of their structure was the first of a helical nucleoprotein. In the molecular biological phase of research, TMV RNA was the first plant virus genome to be sequenced completely, its genes were found to be expressed by cotranslational particle disassembly and the use of subgenomic mRNA, and the mechanism of assembly of progeny particles from their separate parts was discovered. Molecular genetical and cell biological techniques were then used to clarify the roles and modes of action of the TMV non–structural proteins: the 126 kDa and 183 kDa replicase components and the 30 kDa cell–to–cell movement protein. Three different TMV genes were found to act as avirulence genes, eliciting hypersensitive responses controlled by specific, but different, plant genes. One of these (the N gene) was the first plant gene controlling virus resistance to be isolated and sequenced. In the biotechnological sphere, TMV has found several applications: as the first source of transgene sequences conferring virus resistance, in vaccines consisting of TMV particles genetically engineered to carry foreign epitopes, and in systems for expressing foreign genes. TMV owes much of its popularity as a research model to the great stability and high yield of its particles. Although modern methods have much decreased the need for such properties, and TMV may have a less dominant role in the future, it continues to occupy a prominent position in both fundamental and applied research.


Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


2021 ◽  
Vol 9 (2) ◽  
pp. 82-89
Author(s):  
Rita Noveriza ◽  
Tri Lestari Mardiningsih ◽  
John Nefri ◽  
Siti Riffiah

Clove oil has the potential to suppress the development of the mosaic virus in patchouli plants, but its effectiveness in the field has not been studied. This study aimed to evaluate the effect of clove nano biopesticide on controlling patchouli mosaic disease. The research was conducted at the Manoko Experimental Garden, Bandung, West Java from March to November 2018. The patchouli used was Patchoulina-2 variety, which originated from the Seed Breeder Garden in Lembang, Bandung.  This study was arranged in a Randomized Block Design (RBD), consisting of five treatments and ten replications within each treatment, with one hundred plants in each replication. The results obtained showed that nano biopesticides of citronella, clove, and commercial citronella (Asimbo) were able to reduce the incidence and intensity of mosaic diseases in patchouli plants, showing the efficacy levels of 14.68%, 9.06%, and 5.83%, respectively. The application of citronella and clove biopesticides on Patchoulina-2 every month could increase plant fresh weight, when compared to the plants without treatment. Patchoulina-2 plants treated with nano biopesticides of clove and commercial citronella (Asimbo) showed higher value of fresh weight compared to those treated with citronella nano biopesticide. The clove nano biopesticide can also be developed to control mosaic diseases in patchouli plants.


2012 ◽  
Vol 40 (2) ◽  
pp. 159 ◽  
Author(s):  
Maria BOROVINOVA ◽  
Vilina PETROVA ◽  
Svetla MANEVA

The presented study aimed to determine apples trunk and branch diseases and pests in three growing systems conventional, integrated and biological (organic). The investigations were made on an experimental apple orchard (1 ha) of the Institute of Agriculture at Kyustendil, Southwest Bulgaria in four consecutive years from 2007 to 2010. Three scab resistant cultivars Prima, Florina and Erwin Baur grafted on rootstocks MM106 were planted in 1996. The orchard was divided into four plots. One plot was treated conventionally with a normal pesticide programme, two plots were treated integrated according to the general principles, rules and standards of integrated apple production and one plot for biological (organic). The monitoring of pests and diseases and assessment of their density were done every two weeks. It was established that during the experimental period important disease and pests on apple trees in different growing systems were black rot Botryosphaeria obtusa, apple clearwig moth Synanthedon myopaeformis and shorthole borer Scolytus rugulosus. The damages by trunk and branch diseases and pests on apple were considerable higher in biological growing system. The mean rate of attack of cultivar Erwin Baur by Botryosphaeria obtusa in biological and conventional growing systems was 52.35% and 4.65%, respectively. The percentage of damaged by Scolytus rugulosus trunk and branch area per tree reach to 58.74 in biological and 0.23 in conventional system. Reduced vitality of apple trees growing with out pesticides and mineral fertilizers in biological growing system was the reason for strong infection of Botryosphaeria obtusa and attack of Synanthedon myopaeformis and Scolytus rugulosus.


1962 ◽  
Vol 40 (1) ◽  
pp. 49-51 ◽  
Author(s):  
Blair H. MacNeill

Extensive sampling of naturally infected field and greenhouse tomatoes has revealed the presence of a specialized form of the tobacco mosaic virus. This tomato form, readily differentiated from that commonly occurring in tobacco, has been found in widely separated geographic areas within Canada, and is the dominant, if not the only, form in tomato even in regions where tobacco and tomatoes are grown as contiguous crops. This specialization to tomato of a virus form distinct from that in tobacco does not support the view commonly held that smoking tobacco is the main source of inoculum for the mosaic disease in commercial tomatoes.


Sign in / Sign up

Export Citation Format

Share Document