scholarly journals Gynura japonica: A new host of Apple stem grooving virus and Chrysanthemum virus B in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Yuchao Lai ◽  
Xinyang Wu ◽  
Lanqing Lv ◽  
Jiajia Weng ◽  
Kelei Han ◽  
...  

Gynura japonica (Thunb.) Juel [Asteraceae; syn: G. segetum (Lour.) Merr] is an important perennial medicinal herb used in China for topical treatment of trauma injuries (Lin et al. 2003). It grows naturally in the southern provinces of China and is also sometimes cultivated. During 2018-2020, wild G. japonica plants exhibiting chlorotic spots and mosaic symptoms were observed in Zhejiang province, China. To identify the possible causal agents of the disease, a single symptomatic leaf sample was collected in August 2019 and sent to Zhejiang Academy of Agricultural Sciences (Hangzhou, China) for next generation sequencing (NGS). Total RNAs extracted with TRIzol (Invitrogen, Carlsbad, USA) were subjected to high throughput sequencing on the Illumina NovaSeq 6000 platform with PE150bp and data analysis was performed by CLC Genomic Workbench 11 with default parameters (QIAGEN, Hilden, Germany). A total of 37,314,080 paired-end reads were obtained, and 11,785 contigs (961 to 10,964 bp) were generated and compared with sequences in GenBank using BLASTn or BLASTx. Of the total of 12 viral-related contigs obtained, one with a length of 6,442 nt mapped to the genomic RNA of ASGV (MN495979), seven contigs with lengths ranging from 1,034 to 2,901 nt mapped to Chrysanthemum virus B (CVB), and four mapped to broad bean wilt virus 2 (BBWV2), a virus which is known to infect G. procumbens (Kwak et al. 2017). To further confirm the presence of ASGV and CVB, primers were designed and the complete nucleotide sequences of both viruses were amplified from the original NGS sample using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) according to the manufacturer’s instructions (Tiosbio, Beijing, China). BLASTn analysis revealed that the complete 6,451 nt sequence of ASGV (GenBank accession No. MW259059) shared the highest identity (81.2%) with a Chinese isolate of ASGV from citrus (MN495979). The two isolates grouped with another Chinese isolate (from pear) in phylogenetic analysis. The predicted coat protein of the virus had the highest nt identity of 93.7% (96.2% amino acid sequence identity) with that of the Chinese ASGV isolate XY from apple (KX686100). The complete genomes of two distinct molecular variants of CVB (both 8,987 nt in length) were also obtained from this sample (GenBank accession Nos. MW269552, MW269553). They shared 86.8% nt identity with each other and had 81.1% and 82.1% identity to the only known complete sequence of CVB from chrysanthemum (AB245142). Ten additional wild G. japonica plants with mosaic symptoms were collected randomly during 2019-2020 from Hangzhou (n=6) and Ningbo (n=4) in Zhejiang province and tested by RT-PCR with specific primer pairs to detect BBWV2, ASGV and CVB. RT-PCR and subsequent sequencing revealed that these three viruses were present in all the samples tested, indicating that co-infection of G. japonica by ASGV, CVB and BBWV2 is common. CVB mainly infects chrysanthemum (Singh et al. 2012), while ASGV is known as a pathogen of various fruit trees especially in the family Rosaceae, although there are recent reports that it can also infect some plants in Gramineae, Asparagaceae and Nelumbonaceae (Bhardwaj et al. 2017; Chen et al. 2019; He et al. 2019). Our results provide the first report that Gynura is a natural host of CVB and ASGV. Further surveys and biological studies are underway to evaluate the importance of Gynura as a virus reservoir for epidemics among the various hosts.

Plant Disease ◽  
2021 ◽  
Author(s):  
Chengyong He ◽  
Xiaoli Zhao ◽  
Lingjiao Fan ◽  
Shifang Li ◽  
Hongqing Wang

Brassica yellows virus (BrYV; genus Polerovirus, family Solemoviridae) has an icosahedral spherical virion with a positive-sense single-stranded RNA genome and it is distinguished from turnip yellows virus (TuYV) based on differences in ORF0 and ORF5 (Xiang et al., 2011). To investigate the occurrence and distribution of viruses infecting strawberry (Fragaria ananassa) in the main production areas in China, a survey of nine greenhouses (667 m2 each) was conducted in the cities of Yantai and Beijing, China in August 2020. About 1% of strawberry plants in each greenhouse showed virus-like symptoms of chlorotic spots; 89 symptomatic leaf samples were randomly collected for virus testing. Total RNA was extracted from a pool of eight samples of four different cultivars (Hokowase: 2, Mibao: 2, Sagahonoka: 2, Monterey: 2) from Yantai using RNAprep Pure Plant Plus Kit (TianGen, China). A cDNA library was constructed by NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® (NEB, USA) after ribosomal RNA-depletion using an Epicentre Ribo-Zero™ rRNA Removal Kit (Epicentre, USA). High-throughput sequencing was done on Illumina Hiseq 4000, generating 70,931,850 high-quality 150 bp paired-end reads. Clean reads were de novo assembled by Trinity (v2.2.0) and the resulting contigs were screened by BLASTn and BLASTx against GenBank database as described previously (Grabherr et al., 2013). A total of 1,432,164 high-quality reads unmapped to the strawberry genome were obtained and assembled into 93 contigs (ranging from 33 to 8,031 nt). Seven of these contigs (277 to 1,254 nt) shared 98.2 to 100% nt identities with BrYV-A (accession no. HQ388348) and covered 89.5% of the genome of BrYV-A. Subsequent analyses indicated the presence of Strawberry pallidosis-associated virus and Strawberry mottle virus in the analyzed sample, both have been reported in strawberry in China (Shi et al., 2018; Fan et al., 2021). To confirm BrYV infection, total RNA was isolated from the eight samples used for HTS and reverse transcription polymerase chain reaction (RT-PCR) was conducted with two pairs of specific primers (CP and rtp, Supplementary Table 1) designed based on the assembled contigs. PCR products with expected sizes (587 and 609 bp) were observed in one sample (cv. Mibao). BLASTn analysis indicated that the amplicons (accession no. MW548437 and MW548438) shared 98.6% and 99.3% nt identity with BrYV-A, respectively. To obtain the complete sequence of the putative BrYV isolate, the gaps were bridged and the terminal sequences were determined using 5ʹ and 3ʹ RACE kits (Clontech, China) based on the assembled contigs. The complete genome sequence of the putative BrYV isolate has a length of 5,666 nt (accession no. MZ666129) and shares more than 94.3% nt identities with other BrYV isolates. Phylogenetic analysis indicated that the isolate grouped closely with BrYV and further from TuYV (Figure S1). In addition, 11 samples (cv. Benihoppe) of the remaining 81 symptomatic strawberry samples tested positive for BrYV by RT-PCR with the two pairs of primers mentioned above. The sequences (accession no. MZ407232 and MZ407233) revealed 99.5% and 99.3% nt identities with MW548437 and MW548438. To the best of our knowledge, this is the first report of natural infection of BrYV in strawberry plants. Our findings expand the host range of BrYV, but disease association is difficult to establish due to presence of mixed infection and non-fulfillment of Koch's postulates.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaoling Sai ◽  
Zhen Liu ◽  
Xuemeng Ma ◽  
Yinying Zheng

Xinjiang Uygur Autonomous Region is the largest grape-producing area in China, with a grape output of 3.05 million tons in 2020, accounting for nearly 20% of the total grape output in China (National Bureau of Statistics, 2021). Viral disease is a major factor threatening the grape industry and results in large economic losses by affecting the quality of grapes and wines. Actually, nearly 80 different viruses have been recorded in grapevine (Fuchs, 2020). To identify viruses that infect grapevine in Xinjiang, leaves of four vines of cultivar Cabernet Sauvignon with symptoms of chlorotic spots and crinkling were collected from a vineyard at Shihezi University in Shihezi City in May 2019 and pooled for total RNA extraction (Invitrogen™ PureLink ® Plant RNA Reagent, USA). After ribodepletion, a cDNA library was prepared using the Ribo-ZeroTM Kit (Illumina, San Diego, USA) and subjected to high-throughput sequencing (HTS) on the Illumina NovaSeq 6000 platform (Novogene, China). In total, 41,799,420 paired-end reads (150 nt × 2) were obtained after performing quality control using Trimmomatic version 0.39 (Bolger et al., 2014). These reads were de novo assembled into 154,716 contigs using the rnaSPAdes method in SPAdes software with default parameters (Bankevich et al., 2012). BLASTn analysis of these contigs led to the identification of 59 viral-related contigs from 248 -18476 bp. These contigs belonged to six positive-stranded RNA viruses, namely, grapevine polerovirus 1 (GPoV-1; 2 contigs), grapevine berry inner necrosis virus (GBINV; 4 contigs), grapevine leafroll-associated virus 3 (GLRaV-3; 2 contigs), grapevine Pinot gris virus (GPGV; 3 contigs), grapevine rupestris stem pitting-associated virus (GRSPaV; 4 contigs), and grapevine fleck virus (GFkV; 17 contigs); one DNA virus, grapevine geminivirus A (GGVA; 2 contigs); and one viroid, Australian grapevine viroid (AGVd; 1 contig). Among them, GPoV-1 is a newly discovered grape-infecting virus that has recently been reported from Japan and France (Candresse et al., 2020; Chiaki and Ito, 2020). The two contigs of GPoV-1 were assembled manually into a 5627-nt scaffold that covers 99.6% of the genome of the reference GPoV-1 isolate (MT008025). The scaffold shared 98.5% and 98.2% nucleotide (nt) sequence identities with the French GPoV-1 isolate KT (MT008025) and the Japanese GPoV-1 isolate KC (LC505098), respectively. To confirm the GPoV-1 infection of the grapevines used for HTS analysis, we designed a primer pair targeting the coding region of the P1 protein GP30F (5′-CCTCTTTCGCTGCCATAGGC-3′) and GP2180R (5′-CCTGGAGCCTTAAGCTGGTG-3′) and applied them in revere transcription (RT)-PCR using a PrimeScriptTM One Step RT–PCR Kit (Takara, China) to detect GPoV-1. The expected 2151-bp fragment was amplified from one of the four grapevine samples. The amplicon was cloned into the pMD19-T vector (TaKaRa, China) and Sanger sequenced. BLASTn analysis showed that the sequence of the amplicon (GenBank accession no. OK574336) shared 98% identity with the scaffold obtained from HTS and shared 98.5% and 97.4% identity with the GPoV-1 isolates KT and KC, respectively. To determine the occurrence of GPoV-1 in the vineyard, 8 and 20 leaves were randomly collected from grapevines of cvs. Black Monukka and Cabernet Sauvignon, respectively. We designed a primer pair of GPoV4264F (5′-ACTGCACAGACTCTCACACG-3′) and GPoV4657R (5′- TCCTTCGCGCAGTCACTATC-3′), which target the coding region of the P3-P5 fusion protein. An expected 394-bp amplicon was detected in 2 out of the 8 Black Monukka and 7 out of the 20 Cabernet Sauvignon leaf samples. Sanger sequencing confirmed the GPoV-1 identity of the amplicons. Although all the samples used for HTS analysis displayed symptoms, 4 of 9 samples in which GPoV-1 infection was detected were asymptomatic, suggesting that GPoV-1 may be latent, as reported previously (Candresse et al., 2020). To the best of our knowledge, this is the first report of GPoV-1 infection of grapevine in China. Although most members of the genus Polerovirus (family Solemoviridae) are transmitted by aphids, how GPoV is transmitted remains unknown, representing an increased risk for its spread. Therefore, attention should be given to reducing the prevalence of GPoV-1 in grape-producing areas in China, especially in Xinjiang.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1244-1244 ◽  
Author(s):  
I. Fekih Hassen ◽  
S. Roussel ◽  
J. Kummert ◽  
H. Fakhfakh ◽  
M. Marrakchi ◽  
...  

Almond (Prunus dulcis Mill) is an important crop in countries of the Mediterranean area. Until now, among viroids, only Hop stunt viroid (HSVd) is known to infect cultivated almond trees (2). In 2004, a survey of almond trees was carried out in orchards in different regions of Tunisia, a major producing and exporting country of almond. Symptoms such as mosaic and necrotic lesions, potentially caused by the Peach latent mosaic viroid (PLMVd), were observed on leaves of cultivated almond trees. Since PLMVd was recently detected in peach and pear trees in Tunisia (4), the presence of this viroid in almond trees was studied. The detection method on the basis of one-tube reverse transcription-polymerase chain reaction (RT-PCR) assays was previously described and validated for the detection of this viroid in fruit trees (4). Amplification products were obtained by using previously reported primer pairs of PLMVd (1). Positive controls included RNA preparations of twigs of PLMVd-infected GF 305 peach seedlings. These materials, provided by B. Pradier (Station de Quarantaine des Ligneux, Lempdes, France), were positive as revealed by chip budding on peach seedling indicator plants grown under greenhouse conditions. RT-PCR analysis of nucleic acid preparations from leaves of almond showed specific amplification products with the expected size of 337 bp for two almond trees among 17 trees tested. Nucleotide sequence analyses of cloned amplification products obtained with the PLMVd primers confirmed a size of 337 bp and revealed a sequence similar to sequences from other PLMVd isolates previously characterized. The sequences shared 94 to 98% identity with the reference isolates of PLMVd from peach (EMBL Accession No. M83545, AF170511, AF170514, and AY685181). The two infected almond trees are proximal to each other and peach trees infected with PLMVd. This suggests that one tree may have served as a source of inoculum for the other through agronomic practices such as pruning or the aphid Myzus percicae (3). Alternatively, PLMVd may have originated in an unknown host and was then transmitted to almond trees. Our investigation shows that almond is a new host for PLMVd. References: (1) N. Astruc. Eur. J. Plant Pathol. 102:837, 1996. (2) M. C. Cañizares et al. Eur. J. Plant Pathol. 105:553, 1999. (3) J. C. Desvignes et al. Phytoma 444:70, 1992. (4) I. Fekih Hassen et al. Plant Dis. 88:1164, 2004.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 753
Author(s):  
Miroslav Glasa ◽  
Richard Hančinský ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Jana Tomašechová ◽  
...  

In recent years, high throughput sequencing (HTS) has brought new possibilities to the study of the diversity and complexity of plant viromes. Mixed infection of a single plant with several viruses is frequently observed in such studies. We analyzed the virome of 10 tomato and sweet pepper samples from Slovakia, all showing the presence of potato virus Y (PVY) infection. Most datasets allow the determination of the nearly complete sequence of a single-variant PVY genome, belonging to one of the PVY recombinant strains (N-Wi, NTNa, or NTNb). However, in three to-mato samples (T1, T40, and T62) the presence of N-type and O-type sequences spanning the same genome region was documented, indicative of mixed infections involving different PVY strains variants, hampering the automated assembly of PVY genomes present in the sample. The N- and O-type in silico data were further confirmed by specific RT-PCR assays targeting UTR-P1 and NIa genomic parts. Although full genomes could not be de novo assembled directly in this situation, their deep coverage by relatively long paired reads allowed their manual re-assembly using very stringent mapping parameters. These results highlight the complexity of PVY infection of some host plants and the challenges that can be met when trying to precisely identify the PVY isolates involved in mixed infection.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dan Edward Veloso Villamor ◽  
Karen E Keller ◽  
Robert Martin ◽  
Ioannis Emmanouil Tzanetakis

A comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium and 8 Rubus) with known virus profiles was completed. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, RT-PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared to RT-PCR on a wide spectrum of virus variants and discovery of novel viruses. More importantly, in most cases where the two protocols showed parallel virus detection, 11 viruses in 16 berry selections were not consistently detected by both methods at all sampling points. Based on these data we propose a four sampling times/two-year testing requirement for berry and potentially other crops to ensure that no virus remains undetected independent of titer, distribution or other virus/virus or virus/host interactions.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 562-562 ◽  
Author(s):  
K. Hamed ◽  
W. Menzel ◽  
M. E. Mohamed ◽  
K. A. Bakheet ◽  
S. Winter

Garlic (Allium sativum L.) is one of the most important vegetable field crops in Sudan, cultivated on an area of more than 6,000 ha with a total yield of 27,000 t in 2010 (faostat.fao.org). As part of a project which started in 2010 to improve the garlic production in Sudan, samples from local varieties showing severe mosaic and/or mottling were collected in winter 2011 from the main production areas in River Nile State, Northern State, and Darfur State. The plant material used for garlic production came from Sudan and was not imported. Because no reliable data were available on which viruses occur in garlic in Sudan, specific tests were initially omitted. In order to get an overview of the viruses present, dsRNA was prepared of a mixed leaf sample (12 leaves of different samples). This resulted in a high molecular weight dsRNA of approximately 9 kbp that served as template for a random RT-PCR followed by cloning and sequencing (3). Three identical clones originating from one PCR product covering the C-terminal part of the coat protein to the N-terminal part of the nucleic acid binding protein showed the highest sequence similarity to Garlic common latent virus (GarCLV). The nucleotide sequence identities of the 554-bp insert range from 85% to an isolate from India (Accession No. FJ154841) up to 97% to a GarCLV isolate from The Netherlands (AB004804), identifying the virus as a Sudanese isolate of GarCLV, one of the most common garlic infecting viruses. GarCLV belongs to the genus Carlavirus (1) and has previously been reported from Asia, Europe, and South America ( http://sdb.im.ac.cn/vide/descr352.htm ). In order to confirm these results, a double antibody sandwich (DAS)-ELISA was performed with six individual garlic samples in which five samples showed a clear reaction with a GarCLV specific antiserum (AS-0230, DSMZ, Germany). The occurrence of GarCLV could be further confirmed for the ELISA positive samples by a specific RT-PCR using the primers published by Majumder and Baranwal (2). Fragments of the expected size were obtained for all five samples. In addition, one of the positive samples was examined by electron microscopy (Dr. K. Richert-Pöggeler, JKI Braunschweig); filamentous flexous particles typical for carlaviruses could be observed. The random RT-PCR sequence obtained in this study has been submitted to GenBank (KC013030). To our knowledge, this is the first report of GarCLV in garlic in Sudan and Africa. The impact of GarCLV on garlic production in Sudan needs to be evaluated, but the awareness of the occurrence of the virus and the availability of a reliable diagnostic tool will help to select virus-free propagation material. This will form the basis for a sustainable garlic production. References: (1) A. M. Q. King et al. Virus Taxonomy 924, 2012. (2) S. Majumder and V. K. Baranwal. Plant Dis. 93:106, 2009. (3) W. Menzel et al. Arch. Virol. 154:1343, 2009.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 150-150 ◽  
Author(s):  
R. Bešta-Gajević ◽  
A. Jerković-Mujkić ◽  
S. Pilić ◽  
I. Stanković ◽  
A. Vučurović ◽  
...  

Lamium maculatum L. (spotted dead-nettle) is a flowering perennial ornamental that is commonly grown as a landscape plant for an effective ground cover. In June 2010, severe mosaic accompanied by reddish brown necrosis and leaf deformation was noticed on 80% of L. maculatum growing in shade under trees and shrubs in Sarajevo (Bosnia and Herzegovina). Leaves from 10 symptomatic L. maculatum plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kits (Bioreba AG, Reinach, Switzerland) against Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV), the most important viral pathogens of ornamental plants (1,2). Commercial positive and negative controls and extracts from healthy L. maculatum leaves were included in each assay. All samples tested negative for TSWV and INSV and positive for CMV. The virus was mechanically transmitted to test plants and young virus-free plants of L. maculatum using 0.01 M phosphate buffer (pH 7). The virus caused chlorotic local lesions on Chenopodium quinoa, while systemic mosaic was observed on Capsicum annuum ‘Rotund,’ Nicotiana rustica, N. glutinosa, N. tabacum ‘White Burley,’ and Phaseolus vulgaris ‘Top Crop.’ The virus was transmitted mechanically to L. maculatum and induced symptoms resembling those observed on the source plants. Inoculated plants were assayed by DAS-ELISA and all five inoculated plants of each species tested positive for CMV. The presence of CMV in L. maculatum as well as mechanically infected N. glutinosa plants was further confirmed by RT-PCR. Total RNA from symptomatic leaves was isolated using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) following the manufacturer's instructions. The primer pair, CMVAu1u/CMVAu2d, that amplifies the entire coat protein (CP) gene and part of 3′- and 5′-UTRs was used for both amplification and sequencing (4). Total RNA obtained from the Serbian CMV isolate from pumpkin (GenBank Accession No. HM065510) and a healthy L. maculatum plant were used as positive and negative controls, respectively. All naturally and mechanically infected plants as well as the positive control yielded an amplicon of the expected size (850 bp). No amplicon was observed in the healthy control. The amplified product derived from isolate 3-Lam was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions and deposited in GenBank (JX436358). Sequence analysis of the CP open reading frame (657 nt), conducted with MEGA5 software, revealed that the isolate 3-Lam showed the highest nucleotide identity of 99.4% (99.1% amino acid identity) with CMV isolates from Serbia, Australia, and the USA (GQ340670, U22821, and U20668, respectively). To our knowledge, this is the first report of the natural occurrence of CMV on L. maculatum worldwide and it adds a new host to over 1,241 species (101 plant families) infected by this virus (3). This is also an important discovery for the ornamental industry since L. maculatum is commonly grown together with other ornamental hosts of CMV in nurseries and the urban environment as well as in natural ecosystems. References: (1) Y. K. Chen et al. Arch. Virol. 146:1631, 2001. (2) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (3) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (4) I. Stankovic et al. Acta Virol. 55:337, 2011.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 246 ◽  
Author(s):  
Wycliff M. Kinoti ◽  
Narelle Nancarrow ◽  
Alison Dann ◽  
Brendan C. Rodoni ◽  
Fiona E. Constable

One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.


2019 ◽  
Vol 122 (3) ◽  
pp. 1002-1022 ◽  
Author(s):  
Yan Sun ◽  
Wei Lu ◽  
Kaixin Du ◽  
Jin-Hui Wang

Anxiety is presumably driven by fear memory. Molecular profiles in the amygdala of mice with fear memory induced by psychological and physical stresses remain to be elucidated. Fear memory in mice was induced by a paradigm of social defeat. Physical and psychological stresses (PPS) to an intruder were given by attacks from an aggressive resident. Psychological stress (PS) to an observer was given by the witnessing of aggressor attacks. Amygdala tissues from these mice showing fear memory and anxiety vs. tissues from control mice were harvested to analyze mRNA and microRNA profiles by high-throughput sequencing. In the amygdala of intruders and observers with fear memory, the genes encoding 5-HTR1b, 5-HTR2a, DAR2, AChRM3, and IP3R1 are upregulated, whereas genes encoding GPγ11, GPγ13, GPγT2, RasC3, and P450 are downregulated, indicating that these molecules are involved in fear memory induced by physical/psychological stresses. In the comparison of intruders with observers, the upregulation of genes encoding 5-HTR6, GPγ8, P2R7, NFκ2, CREB3/1, and Itgα9 as well as the downregulation of genes encoding DAR5, 5-HTR1a, and HSP1a are involved in fear memory induced by physical stress. The upregulation of genes encoding DAR1, 5-HTR5a and SSR2/3 as well as the downregulation of AdRα1, CREB3/1, GPγ13 and GPγ8 are involved in fear memory induced by psychological stress. Results obtained by sequencing mRNA and microRNA profiles are consistent with results of quantitative RT-PCR analysis and dual-luciferase reporter assays performed for validation. In conclusion, fear memories and anxiety induced by PPS vs. PS are caused by the imbalanced regulation of different synapses and signaling pathways in the amygdala. NEW & NOTEWORTHY The current study identifies the molecular mechanism underlying fear memory and anxiety induced by psychological stress vs. physical stress, in which the imbalanced expression of microRNA-regulated mRNAs relevant to dopaminergic, adrenergic, and serotonergic synapses in the amygdala plays an important role. This result reveals different molecular profiles for psychological and physical stresses.


Sign in / Sign up

Export Citation Format

Share Document