scholarly journals Transfer of Downy Mildew Resistance from Wild Basil (Ocimum americanum) to Sweet Basil (O. basilicum)

2018 ◽  
Vol 108 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Yariv Ben-Naim ◽  
Lidan Falach ◽  
Yigal Cohen

Sweet basil (Ocimum basilicum) is susceptible to downy mildew caused by the oomycete foliar pathogen Peronospora belbahrii. No resistant varieties of sweet basil are commercially available. Here, we report on the transfer of resistance gene Pb1 from the highly resistant tetraploid wild basil O. americanum var. americanum (PI 500945, 2n = 4x = 48) to the tetraploid susceptible O. basilicum ‘Sweet basil’ (2n = 4x = 48). F1 progeny plants derived from the interspecific hybridization PI 500945 × Sweet basil were resistant, indicating that the gene controlling resistance (Pb1) is dominant, but sterile due to the genetic distance between the parents. Despite their sterility, F1 plants were pollinated with the susceptible parent and 115 first backcross generation to the susceptible parent (BCs1) embryos were rescued in vitro. The emerging BCs1 plants segregated, upon inoculation, 5:1 resistant/susceptible, suggesting that resistance in F1 was controlled by a pair of dominant genes (Pb1A and Pb1A’). Thirty-one partially fertile BCs1 plants were self-pollinated to obtain BCs1-F2 or were backcrossed to Sweet basil to obtain the second backcross generation to the susceptible parent (BCs2). In total, 1 BCs1-F2 and 22 BCs2 progenies were obtained. The BCs1-F2 progeny segregated 35:1 resistant/susceptible, as expected from a tetraploid parent with two dominant resistant genes. The 22 BCs2 progenies segregated 1:1 resistant/susceptible (for a BCs1 parent that carried one dominant gene for resistance) or 5:1 (for a BCs1 parent that carried two dominant genes for resistance) at a ratio of 4:1. The data suggest that a pair of dominant genes (Pb1A and Pb1A’) residing on a two homeologous chromosomes is responsible for resistance of PI 500945 against P. belbahrii.

Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1136-1140 ◽  
Author(s):  
Chandramani Raj ◽  
Rajan Sharma ◽  
B. Pushpavathi ◽  
S. K. Gupta ◽  
K. Radhika

Pearl millet downy mildew (DM), caused by Sclerospora graminicola, is of serious economic concern to pearl millet farmers in the major crop-growing areas of the world. To study the inheritance and allelic relationship among genes governing resistance to this disease, three DM-resistant pearl millet lines (834B, IP 18294-P1, and IP 18298-P1) and one susceptible line (81B) were selected on the basis of disease reaction under greenhouse conditions against two isolates of S. graminicola (Sg 526-1 and Sg 542-1). Three resistant parents were crossed with the susceptible parent to generate F1, F2, and backcross BC1P1 (susceptible parent × F1) and BC1P2 (resistant parent × F1) generations for inheritance study. To carry out a test for allelism, the three resistant parents were crossed with each other to generate F1 and F2 generations. The different generations of these crosses were screened for disease reaction against two isolates (Sg 526-1 and Sg 542-1) by artificial inoculation under greenhouse conditions. The segregation pattern of resistance in the F2 and corresponding backcross generations revealed that resistance to DM is controlled by a single dominant gene in 834B and IP 18294-P1 and by two dominant genes in IP 18298-P1. A test for allelism inferred that a single dominant gene for resistance in 834B is nonallelic to that which governs resistance in IP 18294-1, whereas one of the two dominant genes for DM resistance in IP 18298-P1 against the test isolates is allelic to the gene for DM resistance in 834B and a second gene is allelic to the resistance gene present in IP 18294-P1.


2021 ◽  
Author(s):  
Yariv Ben-Naim ◽  
Michal Weitman

Sweet basil (Ocimum basilicum, 2n=4x=48) is susceptible to downy mildew caused by Peronospora belbahrii. Pb1 gene exhibit complete resistance to the disease. However, Pb1 became prone to disease due to occurrence of a new virulent races. Here we show that Zambian accession PI 500950 (O. americanum var pilosum) is highly resistant to the new races. From an interspecies backcross between PI 500950 and the susceptible cv ‘Sweet Basil’ we obtained, by embryo rescue, a population of 131 BC1F1 plants. This population segregated 73 Resistant: 58 Susceptible (1: 1, P=0.22), suggesting the resistance is controlled by one incompletely dominant gene called Pb2. To determine whether allelic relationship is existing between Pb1 and Pb2, we used two differential races, race-0, avirulent to both PI 500945 (Pb1) and PI 500950 (Pb2) and race-1, virulent to PI 500945 but avirulent to PI 500950. F1 plants obtained from ‘12-4-6’ (BC6F3 derived from PI 500945) and ‘56’ (BC3F3 derived from PI 500950) showed resistant superiority to both races due to dominant complementary interaction. F2 plants segregated to race-0 as follow; 12:3:1, immune: incomplete resistant: susceptible, as against to 9:3:4 to race-1, indicating Pb1 and Pb2 are not alleles. Since joint action is contributed in F1 plants and in advanced (BC3F3(56) x BC6F3(12-4-6) F4) populations who carrying both genes, it can be assumed that both accessions carry two unlinked genes but share a common signal transduction pathway which leading to dominant complementation superiority of the resistance against different races of BDM.


2015 ◽  
Vol 140 (5) ◽  
pp. 396-403 ◽  
Author(s):  
Robert M. Pyne ◽  
Adolfina R. Koroch ◽  
Christian A. Wyenandt ◽  
James E. Simon

Sweet basil (Ocimum basilicum) is one of the most economically important culinary herbs in the world, yet global production has become increasingly challenging due to the destructive disease downy mildew (Peronospora belbahrii). Although multiple sources of resistance have been identified, there are no resistant sweet basil cultivars with a commercially acceptable chemotype and phenotype available. The commercial basil cultivar Mrihani (MRI) was identified as resistant and crossed with a Rutgers University susceptible sweet basil inbred line (SB22) to generate a full-sibling family. To determine the mode of inheritance for resistance to downy mildew in basil, six related generations of the MRI × SB22 family were evaluated using a disease severity index (DSI) at northern and southern New Jersey locations over 2 years. All siblings in the F1 and BC1P2 generations were resistant (0.33 > DSI) providing strong evidence that inheritance of resistance from MRI was conferred by dominant alleles. Segregation ratios in the F2 and backcross to the susceptible parent (BCP1) generations demonstrated chi-square goodness of fit to the two-gene complementary (F2: P = 0.11, BC1P1: P = 0.04) and recessive epistatic (F2: P = 0.03, BC1P1: P = 0.63) models. Further analyses of gene effects using a weighted six-parameter scaling test provided evidence that nonallelic additive × additive and additive × dominant gene effects were highly significant (P < 0.001) and resistance reducing. This is the first report of heritable genetic resistance that can be introduced to sweet basil without the issue of sterility barriers. Plant breeding strategies using the MRI × SB22 family should exploit dominant gene action and remove recessive, resistance-reducing alleles from the population.


Author(s):  
Anil Kumar Singh ◽  
Dhirendra Kumar Singh ◽  
Rajeev Kumar ◽  
Mahendra Narain Singh ◽  
Ved Prakash Rai

Fusarium wilt (FW) is a major fungal disease of pigeonpea causing huge economic losses annually and breeding of FW resistant cultivars is essential as other control measures such as fungicides are expensive and harmful to environment. To understand the inheritance of FW resistance, nine populations each of F1, F2 and BCSF1 (F1 × susceptible parent) derived from crossing between three adopted but susceptible long duration pigeonpea cultivars (MA-6, MAL-13 and MAL-18) with three FW resistant lines (BSMR-846, BWR-23 and BDN-2029). All F1 plants were resistant to FW indicating the dominance of resistance. The ÷2 test for goodness-of-fit showed F2 segregation ratio of 13:3 (one dominant and one recessive), 15:1 (two dominant genes) and 3:1 (one dominant gene) in BSMR-846, BWR-23 and BDN-2029, respectively. The information generated on the genetics of FW resistance will be helpful in development of high yielding and stable wilt resistant, long duration pigeonpea varieties.


2020 ◽  
Vol 16 (6) ◽  
pp. 937-941
Author(s):  
Sharad Vats ◽  
Preeti Mehra

Background: Vector-borne diseases are quite prevalent globally and are one of the major causes of deaths due to infectious diseases. There is an availability of synthetic insecticides, however, their excessive and indiscriminate use have resulted in the emergence of resistant varieties of insects. Thus, a search for novel biopesticide has become inevitable. Methods: Rotenoids were isolated and identified from different parts of Medicago sativa L. This group of metabolites was also identified in the callus culture, and the rotenoid content was monitored during subculturing for a period of 10 months. Enhancement of the rotenoid content was evaluated by feeding precursors in a tissue culture medium. Results: Four rotenoids (elliptone, deguelin, rotenone and Dehydrorotenone) were identified, which were confirmed using spectral and chromatographic techniques. The maximum rotenoid content was found in the seeds (0.33±0.01%), followed by roots (0.31±0.01%) and minimum in the aerial parts (0.20±0.05%). A gradual decrease in the rotenoid content was observed with the ageing of subcultured tissue maintained for 10 months. The production of rotenoids was enhanced up to 2 folds in the callus culture using amino acids, Phenylalanine and Methionine as precursors as compared to the control. The LC50 value of the rotenoids was found to be 91 ppm and 162 ppm against disease vectors of malaria and Dracunculiasis, respectively. Conclusion: The study projects M. sativa as a novel source of biopesticide against the disease vectors of malaria and Dracunculiasis. The use of precursors to enhance the rotenoid content in vitro can be an effective venture from a commercial point of view.


1969 ◽  
Vol 11 (3) ◽  
pp. 587-591 ◽  
Author(s):  
T. N. Khan

Variability in the host-reaction of barley to infection by Drechslera teres was examined in the parents and progeny of selected crosses under different environmental conditions of testing.The Ethiopian variety C.I. 5791 exhibits a consistently high level of resistance under a range of environmental conditions, which is in contrast to the Manchurian variety C.I. 2330. The sensitivity of the genes for resistance possessed by these varieties to environmental modifications is considered to depend upon their respective genetic backgrounds. Furthermore, variability of host reaction in the progeny of these resistant varieties was shown to be influenced by the genetic background of the susceptible parent used.The implications of these findings in the conduct and interpretation of genetic studies and in backcross breeding programs is discussed.


1962 ◽  
Vol 3 (1) ◽  
pp. 24-50 ◽  
Author(s):  
I. Gibson ◽  
G. H. Beale ◽  
E. C. R Reeve

1. Replacement of the dominant genes M1 and M2 in Paramecium aurelia, stock 540 (syngen/variety 1), results in loss of ability to maintain mu particles and manifestation of mate-killing after a delay of eight to fifteen fissions in most cells. The change, when it does occur, is relatively abrupt, extending over less than the space of one inter-fission period.2. The delay between change of genotype and loss of mu particles is interpreted as being due to presence in the initial cytoplasm of some thousand ‘metagons’, which are non-replicating gene derivatives having the physiological activity of the corresponding genes. During successive fissions of paramecia deprived of M1 and M2 the metagons are passively distributed amongst the progeny, until virtually all animals lack them.3. On reaching a stage at which some individuals of genotype m1m1m2m2 contain only a single metagon, the paramecia still contain large numbers of mu particles and are mate-killers. Fission of such animals gives rise to one daughter again with mu particles, and another in which the latter are destroyed during the next inter-fission period.4. By induced cytoplasmic exchange between conjugants, metagons can be transferred from one animal to another via the cytoplasm. Where such transference is into an animal not originally containing mu particles, that animal is converted into a condition in which it favours the maintenance of mu particles and transmits the latter to one or more of its offspring.5. Distribution of metagons amongst progeny of dividing paramecia is not random, due possibly to clumping of the metagons. Induced cytoplasmic exchange seems to break up the clumps.6. Reintroduction of a dominant gene (M2) into a cell recently deprived of the same gene, succeeds—even after fifteen fissions—in re-establishing the ability to support growth of mu particles, provided that the recipient cell contains at least one metagon and one or more mu particles. There is a regular lag of only one fission between introduction of such a dominant gene and its phenotypic manifestation.7. Mathematical formulae are developed for calculating the expected initial number of metagons, the proportions of animals lacking mu particles at each fission following loss of the dominant genes, and the proportions of cells containing 0, 1, 2 …, etc. metagons per cell at any stage. The consequences of one of the possible types of irregular distribution of metagons in dividing paramecia are also considered mathematically.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1579-1579 ◽  
Author(s):  
I. Šafránková ◽  
L. Holková

Sweet basil (Ocimum basilicum L.) is an aromatic plant that is cultivated as a pot plant in greenhouses or in fields in the Czech Republic. The plants are intended for direct consumption or for drying. In April of 2012, the first large chlorotic from the middle necrotic spots occurred gradually on leaves of pot plants O. basilicum cv. Genovese in greenhouses in Central Bohemia. The characteristic gray to brown furry growth of downy mildew appeared on abaxial surfaces of leaves in the place of chlorotic spots within 3 to 4 days. The infested leaves fell off in the late stages of pathogenesis. The infestation gradually manifested itself in ever-younger plants and in July, cotyledons and possibly the first true leaves were already heavily infected and damaged and these plants rapidly died. The plant damage reached 80 to 100%, so it was necessary to stop growing the plants in the greenhouse at the end of July. The causal agent was isolated and identified as Peronospora belbahrii Thines by means of morphological and molecular characters (2,3). Conidiophores were hyaline, straight, monopodial, 280 to 460 μm, branched three to five times, ended with two slightly curved branchlets with a single conidia on each branchled tip. The longer branchlets measured 13 to 24 μm (average 18.2 μm), the shorter one 4 to 15 μm (average 9.7 μm). Conidia were rounded or slightly ovoid, from brownish to dark brownish, measured 22 to 31 × 20 to 28 μm (length/width ratio 1.2). A pathogen-specific sequence was detected with the help of the pathogen ITS rDNA specific primers in symptomatic leaves (1). DNA from plant tissues was isolated using the DNeasy plant Mini Kit (Qiagen, Germany) following the standard protocol. PCR was performed using KAPA2G Robust HotStar kit (Kapa Biosystems, United States) according to the conditions recommended in Belbahri et al. (1). The specific products were visualized by electrophoresis through 1.5% agarose gels. Leaves of 20-day-old potted plants O. basilicum ‘Genovese’ were inoculated by spraying with 5 × 105 conidia/ml of the pathogen. Each pot contained 10 plants. Sterilized distilled water was applied to control plants. Plants were covered with polyethylene bags during the entire incubation period to maintain high humidity, and kept at a temperature of 22 to 24°C. Typical disease symptoms appeared on leaves 5 to 9 days after inoculation. Control plants were symptomless. P. belbahrii was re-isolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. Downy mildew on sweet basil was reported in countries in Africa, Europe, and South and North America (4). To our knowledge, this is the first report of downy mildew on sweet basil in the Czech Republic. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) Y.-J. Choi et al. Mycol. Res. 113:1340, 2009. (3) M. Thines et al. Mycol. Res. 113:532, 2009. (4) C. A. Wyenandt et al. HortScience 45:1416, 2010.


2019 ◽  
Vol 23 (1) ◽  
pp. 61
Author(s):  
Isna Maulida ◽  
Rudi Hari Murti ◽  
Triwidodo Arwiyanto

Ralstonia solanacearum is a plant pathogen causes wilting which is a major obstacle in the cultivation of tomato plants. In plant breeding, knowledge of the source of resistance genes and inheritance patterns is important in the development of bacterial wilt resistant varieties. This study aimed to obtain bacterial wilt resistant lines and to find out the inheritance pattern of tomato resistance to bacterial wilt. Selection of resistant plant involved the selected breeding lines from irradiation and crossing collections of the Genetic Laboratory, Faculty of Agriculture, Universitas Gadjah Mada. Introduced lines of H-7996 and F1 Permata and Timoti were used as a control. H-7996 as resistant parents and GM2 as susceptible parents, and their offspring include F1 GM2 x H-7996, F1 reciprocal, F2, Back Cross 1 (F1 x GM2), and Back Cross 2 (F1 x H-7996) used in testing inheritance patterns. Inoculation was carried out 1 week after planting by pouring 100 ml of water suspension of R. solanacarum (108  cfu/ml) on the roots. Completely Randomized Design (CRD) was used in this experiment. The scoring observation was carried out every week for one month. This study showed that Permata as a control was the most resistant, while Timoti and H-7996 were medium resistant. The CLN, G6, G8, and G7 lines were susceptible medium, yet only G8 and G7 with the smallest percentage of disease intensity and not significantly different than Timoti. The resistance gene to bacterial wilt on H-7996 was controlled by genes in the cell nucleus with additive-dominant gene action. Resistance to bacteria has a moderate level of heritability.


1980 ◽  
Vol 22 (1) ◽  
pp. 27-33 ◽  
Author(s):  
D. E. Harder ◽  
R. I. H. McKenzie ◽  
J. W. Martens

The inheritance of resistance to oat crown rust was studied in three accessions of Avena sterilis L. Accession CAV 4274 originated from Morocco, CAV 4540 from Algeria, and CAV 3695 from Tunisia. Seedling rust tests on F2 backcross families indicated the presence of two dominant genes for crown rust resistance in CAV 4274. One of these, a gene conditioning resistance to most races tested, was linked or allelic to gene Pc-38, and was designated gene Pc-62. The second gene conferred resistance only to one of the six races studied, and was not tested further. In CAV 4540, a single dominant gene, Pc-63 was possibly allelic with Pc-62 and linked or allelic to Pc-38. Genes Pc-62 and 63 are generally similar to Pc-38 in their resistance spectrum, but these three genes are differentiated by races CR 102, CR 103, and CR 107. A single dominant gene in CAV 3695 appeared to be Pc-50.


Sign in / Sign up

Export Citation Format

Share Document