Exogenous melatonin improves pear resistance to Botryosphaeria dothidea by increasing autophagic activity and sugar/organic acid levels

2022 ◽  
Author(s):  
Yun Wang ◽  
Guoming Wang ◽  
Wenyu Xu ◽  
Zhenwu Zhang ◽  
Xun Sun ◽  
...  

Pear is a perennial deciduous fruit tree of the Rosaceae Pyrus genus, and is one of the main fruit trees worldwide. The pathogen Botryosphaeria dothidea infects pear trees and causes pear ring rot disease. According to our research, exogenous melatonin application enhanced resistance to B. dothidea in pear fruit. Melatonin treatment of pears significantly reduced the diameter of disease spots and enhanced the endogenous melatonin content under B. dothidea inoculation. Compared with H2O treatment, melatonin treatment suppressed the increase in ROS and activated ROS-scavenging enzymes. Treatment with exogenous melatonin maintained AsA-GSH at more reductive status. The expression levels of core autophagic genes and autophagosome formation were elevated by melatonin treatment in pear fruit. The silencing of PbrATG5 in Pyrus pyrifolia conferred sensitivity to inoculation, which was only slightly recovered by melatonin treatment. After inoculation with B. dothidea, exogenous melatonin treatment increased the contents of soluble sugars and organic acids in pear fruits compared with H2O treatment. Our results demonstrated that melatonin enhanced resistance to B. dothidea by increasing the autophagic activity and soluble sugar/organic acid accumulation.

Reproduction ◽  
2000 ◽  
pp. 151-156 ◽  
Author(s):  
E Diaz ◽  
D Pazo ◽  
AI Esquifino ◽  
B Diaz

The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


2017 ◽  
Vol 29 (9) ◽  
pp. 1821 ◽  
Author(s):  
Shuang Liang ◽  
Jing Guo ◽  
Jeong-Woo Choi ◽  
Nam-Hyung Kim ◽  
Xiang-Shun Cui

After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.


2011 ◽  
Vol 53 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Ping Wang ◽  
Lihua Yin ◽  
Dong Liang ◽  
Chao Li ◽  
Fengwang Ma ◽  
...  

2010 ◽  
Vol 17 (5) ◽  
pp. 682-687 ◽  
Author(s):  
Cavit Çöl ◽  
Kahraman Dinler ◽  
Oğuz Hasdemir ◽  
Oktay Büyükaşık ◽  
Güler Buğdaycı ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2828
Author(s):  
Md. Shakhawat Hossain ◽  
Jing Li ◽  
Ashim Sikdar ◽  
Mirza Hasanuzzaman ◽  
Ferdinand Uzizerimana ◽  
...  

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•−, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


Sign in / Sign up

Export Citation Format

Share Document