scholarly journals The Role of Ethylene Production in Virulence of Pseudomonas syringae pvs. glycinea and phaseolicola

2001 ◽  
Vol 91 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Helge Weingart ◽  
Henriette Ullrich ◽  
Klaus Geider ◽  
Beate Völksch

The importance of ethylene production for virulence of Pseudomonas syringae pvs. glycinea and phaseolicola was assayed by comparing bacterial multiplication and symptom development in bean and soybean plants inoculated with ethylene-negative (efe) mutants and wild-type strains. The efe mutants of Pseudomonas syringae pv. glycinea were significantly reduced in their ability to grow in planta. However, the degree of reduction was strain-dependent. Population sizes of efe mutant 16/83-E1 that did not produce the phototoxin coronatine were 10- and 15-fold lower than those of the wild-type strain on soybean and on bean, and 16/83-E1 produced very weak symptoms compared with the wild-type strain. The coronatine-producing efe mutant 7a/90-E1 reached fourfold and twofold lower population sizes compared with the wild-type strain on soybean and bean, respectively, and caused disease symptoms typical of the wild-type strain. Experiments with ethylene-insensitive soybeans confirmed these results. The virulence of the wild-type strains was reduced to the same extent in ethylene-insensitive soybean plants as the virulence of the efe mutants in ethylene-susceptible soybeans. In contrast, the virulence of Pseudomonas syringae pv. phaseolicola was not affected by disruption of the efe gene.

2005 ◽  
Vol 18 (7) ◽  
pp. 682-693 ◽  
Author(s):  
Beatriz Quiñones ◽  
Glenn Dulla ◽  
Steven E. Lindow

The N-acyl homoserine lactone (AHL)-mediated quorumsensing system in the phytopathogen Pseudomonas syringae pv. syringae requires the AHL synthase AhlI and the regulator AhlR, and is additionally subject to regulation by AefR. The contribution of quorum sensing to the expression of a variety of traits expected to be involved in epiphytic fitness and virulence of P. syringae were examined. Both an aefR- mutant and an ahlR- double mutant, deficient in AHL production, were significantly impaired in alginate production and had an increased susceptibility to hydrogen peroxide compared with the wild-type strain. These mutants were hypermotile in culture, invaded leaves more rapidly, and caused an increased incidence of brown spot lesions on bean leaves after a 48-h moist incubation. Interestingly, an aefR- mutant was both the most motile and virulent. Like the wild-type strain, the AHL-deficient mutant strains incited water-soaked lesions on bean pods. However, lesions caused by an ahlI- ahlR- double mutant were larger, whereas those incited by an aefR- mutant were smaller. In contrast, tissue maceration of pods, which occurs at a later stage of infection, was completely abolished in the AHL-deficient mutants. Both the incidence of disease and in planta growth of P. syringae pv. tabaci were greatly reduced in transgenic tobacco plants that produced AHL compared with wild-type plants. These results demonstrate that quorum sensing in P. syringae regulates traits that contribute to epiphytic fitness as well as to distinct stages of disease development during plant infection.


Microbiology ◽  
2014 ◽  
Vol 160 (5) ◽  
pp. 941-953 ◽  
Author(s):  
So Hae Park ◽  
Zhongmeng Bao ◽  
Bronwyn G. Butcher ◽  
Katherine D’Amico ◽  
Yun Xu ◽  
...  

Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.


2017 ◽  
Vol 30 (4) ◽  
pp. 283-294 ◽  
Author(s):  
Suma Chakravarthy ◽  
Bronwyn G. Butcher ◽  
Yingyu Liu ◽  
Katherine D’Amico ◽  
Matthew Coster ◽  
...  

Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern–triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.


1990 ◽  
Vol 36 (7) ◽  
pp. 484-489 ◽  
Author(s):  
G. C. Papavizas ◽  
D. P. Roberts ◽  
K. K. Kim

Aqueous suspensions of conidia of Gliocladium virens strains Gl-3 and Gl-21 were exposed to both ultraviolet radiation and ethyl methanesulfonate. Two mutants of Gl-3 and three of Gl-21 were selected for tolerance to benomyl at 10 μg∙mL−1, as indicated by growth and conidial germination on benomyl-amended potato dextrose agar. The mutants differed considerably from their respective wild-type strains in appearance, growth habit, sporulation, carbon-source utilization, and enzyme activity profiles. Of 10 carbon sources tested, cellobiose, xylose, and xylan were the best for growth, galactose and glucose were intermediate, and arabinose, ribose, and rhamnose were poor sources of carbon. The wild-type strains and the mutants did not utilize cellulose as the sole carbon source for growth. Two benomyl-tolerant mutants of Gl-3 produced less cellulase (β-1,4-glucosidase, carboxymethylcellulase, filter-paper cellulase) than Gl-3. In contrast, mutants of Gl-21 produced more cellulase than the wild-type strain. Only Gl-3 provided control of blight on snapbean caused by Sclerotium rolfsii. Wild-type strain Gl-21 and all mutants from both strains were ineffective biocontrol agents. Key words: Gliocladium, benomyl tolerance, Sclerotium, rhizosphere competence.


2021 ◽  
Author(s):  
Shahnaz Haque

Enterohemorrhagic Escherichia coli (EHEC) 0157:H7 is a food-borne pathogen that causes hemolytic uremic syndrome and hemorrhagic colitis. The mechanisms underlying the adhesion of EHEC 0157:H7 to intestinal epithelial cells are not well understood. Like other food-borne pathogens, ECEC 0157:H7 must survive the acid stress of the gastric juice in the stomach and short chain fatty acid in the intestine in order to colonize the large intestine. We have found that acid stress and short chain fatty acid stress significantly enhance host-adhesion of EHEC 0157:H7 and also upregulates expression of EHEC fimbrial genes, lpfA1, lpfA2 and yagZ, as demonstrated by our DNA microarray. We now report that disruption of the yagZ (also known as the E. coli common pilus A) gene results in loss of the acid-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the sress-induced and short chain fatty acid-induced adhesion increase seen for the wild type strain. When the yagZ mutant is complemented with yagZ, the stress-induced adhesion pehnotype is restored, confirming the role of yagZ in the acid as well as short chain fatty acid induced adhesion to HEp-2 cells. On the other hand, neither disruption in the long polar fimbria genes lpfA1 or lpfA2 in the wild type showed any effect in adherence to HEp-2 cells; rather displaying a hyperadherant phenotype to HEp-2 cells after acid-induced or short chain fatty acid-induced stress. The results also indicate that acid or short chain fatty acid stress, which is a part of the host's natural defense mechanism against pathogens, may regulate virulence factors resulting in enhanced bacteria-host attachment during colonization in the human or bovine host.


2020 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Marina Zoppo ◽  
Fabrizio Fiorentini ◽  
Cosmeri Rizzato ◽  
Mariagrazia Di Luca ◽  
Antonella Lupetti ◽  
...  

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.


2004 ◽  
Vol 70 (1) ◽  
pp. 535-541 ◽  
Author(s):  
Shin Okazaki ◽  
Masayuki Sugawara ◽  
Kiwamu Minamisawa

ABSTRACT We disrupted the rtxC gene on the chromosome of Bradyrhizobium elkanii USDA94 by insertion of a nonpolar aph cartridge. The rtxC mutant, designated ΔrtxC, produced serinol and dihydrorhizobitoxine but no rhizobitoxine, both in culture and in planta. The introduction of cosmids harboring the rtxC gene into the ΔrtxC mutant complemented rhizobitoxine production, suggesting that rtxC is involved in the final step of rhizobitoxine biosynthesis in B. elkanii USDA94. Glycine max cv. Lee inoculated with ΔrtxC or with a null mutant, Δrtx::Ω1, showed no foliar chlorosis, whereas the wild-type strain USDA94 caused severe foliar chlorosis. The two mutants showed significantly less nodulation competitiveness than the wild-type strain on Macroptilium atropurpureum. These results indicate that dihydrorhizobitoxine, the immediate precursor of the oxidative form of rhizobitoxine, has no distinct effect on nodulation phenotype in these legumes. Thus, desaturation of dihydrorhizobitoxine by rtxC-encoded protein is essential for the bacterium to show rhizobitoxine phenotypes in planta. In addition, complementation analysis of rtxC by cosmids differing in rtxC transcription levels suggested that rhizobitoxine production correlates with the amount of rtxC transcript.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2006 ◽  
Vol 74 (7) ◽  
pp. 4366-4369 ◽  
Author(s):  
Teresa Bader ◽  
Klaus Schröppel ◽  
Stefan Bentink ◽  
Nina Agabian ◽  
Gerwald Köhler ◽  
...  

ABSTRACT By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.


2000 ◽  
Vol 13 (10) ◽  
pp. 1145-1155 ◽  
Author(s):  
Patrice Gaurivaud ◽  
Jean-Luc Danet ◽  
Frédéric Laigret ◽  
Monique Garnier ◽  
Joseph M. Bové

Spiroplasma citri is a plant-pathogenic mollicute. Recently, the so-called nonphytopathogenic S. citri mutant GMT 553 was obtained by insertion of transposon Tn4001 into the first gene of the fructose operon. Additional fructose operon mutants were produced either by gene disruption or selection of spontaneous xylitol-resistant strains. The behavior of these spiroplasma mutants in the periwinkle plants has been studied. Plants infected via leafhoppers with the wild-type strain GII-3 began to show symptoms during the first week following the insect-transmission period, and the symptoms rapidly became severe. With the fructose operon mutants, symptoms appeared only during the fourth week and remained mild, except when reversion to a fructose+ phenotype occurred. In this case, the fructose+ revertants quickly overtook the fructose¯ mutants and the symptoms soon became severe. When mutant GMT 553 was complemented with the fructose operon genes that restore fructose utilization, severe pathogenicity, similar to that of the wild-type strain, was also restored. Finally, plants infected with the wild-type strain and grown at 23°C instead of 30°C showed late symptoms, but these rapidly became severe. These results are discussed in light of the role of fructose in plants. Fructose utilization by the spiroplasmas could impair sucrose loading into the sieve tubes by the companion cells and result in accumulation of carbohydrates in source leaves and depletion of carbon sources in sink tissues.


Sign in / Sign up

Export Citation Format

Share Document