Immune mediators and cytokines in gastrointestinal inflammation

1992 ◽  
Vol 8 (6) ◽  
pp. 975-982 ◽  
Author(s):  
Barry K. Wershil
2021 ◽  
Author(s):  
Aslı Aksu Çerman ◽  
Ezgi Aktaş Karabay ◽  
Hazel Ezgi Kaya ◽  
Filiz Türe Özdemir ◽  
Ezgi Özkur ◽  
...  

Allergy ◽  
2021 ◽  
Author(s):  
Nonhlanhla Lunjani ◽  
Ge Tan ◽  
Anita Dreher ◽  
Milena Sokolowska ◽  
David Groeger ◽  
...  

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 213-215
Author(s):  
K Madsen ◽  
H Dang ◽  
N Hotte ◽  
V Mocanu ◽  
M Ferdaoussi ◽  
...  

Abstract Background Empagliflozin (EMPA) is a highly selective sodium glucose cotransporter-2 (SGLT2) inhibitor and is increasingly being utilized as an antihyperglycemic agent in the management of type 2 diabetes. Interestingly, it has been demonstrated in human trials that EMPA treatment exerts potent cardioprotective effects by reducing cardiac inflammation independently of glycemic control. Further, EMPA has also been shown to suppress LPS-induced renal and systemic inflammation in an animal model. Based on these findings, we hypothesized that EMPA treatment may also be effective in reducing gut inflammation. Aims The aim of this study was to examine the effects of treatment with EMPA on gastrointestinal inflammation in an animal model of inflammatory bowel disease and to determine mechanistic insights regarding its direct effects on gut cytokine secretion. Methods Adult male and female IL-10-/- mice with established colitis were treated with a daily gavage of EMPA (10mg/kg; n=10) or vehicle (n=10) for 14 days. Disease activity was assessed by measurement of mouse weight, colonic weight and length, histological score, cytokine levels in colonic homogenate and lipocalin-2 levels in stool. To examine for possible direct effects of EMPA, colonic explants from wild-type (n=8) and IL-10-/- (n=8) mice were incubated with increasing doses of EMPA (0.1–5 µM) ± LPS (10µg/ml) for 2 hours and tissue levels of IL-1β and TNFα protein measured by ELISA. Results After 14 days EMPA treated IL-10-/- mice had a significant improvement in colonic inflammation as evidenced by decreased colonic weight to length ratio (p=0.019), decreased fecal lipocalin-2 (p=0.03), as well as decreased enterocyte injury (p=0.01), decreased lamina propria neutrophils (p=0.01) and decreased total histological score (p=0.006). EMPA treated mice also maintained their weight over the 14 days while untreated mice continued to lose weight (p=0.04). There were no significant differences in colonic homogenate levels of TNFα, IL-1β, or IL-6 or in blood glucose levels between EMPA-treated mice and controls. In addition, EMPA did not suppress levels of basal or LPS-induced TNFα and IL-1β in colonic explants from either wild-type or IL-10-/- mice suggesting that the beneficial effects in IL-10-/- mice were not due to direct effects of EMPA on colonic TNFα or IL-1β cytokine levels. Conclusions EMPA treatment dramatically improved histologic and fecal inflammatory markers and maintained body weight in adult IL-10-/- mice with established colitis. These findings suggest further investigations into the effects of EMPA in treating gut inflammation are warranted. Funding Agencies CAG, CIHR


2021 ◽  
Vol 22 (12) ◽  
pp. 6441
Author(s):  
Selene Pérez-García ◽  
Valentina Calamia ◽  
Tamara Hermida-Gómez ◽  
Irene Gutiérrez-Cañas ◽  
Mar Carrión ◽  
...  

Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1895
Author(s):  
Azra Memon ◽  
Bae Yong Kim ◽  
Se-eun Kim ◽  
Yuliya Pyao ◽  
Yeong-Geun Lee ◽  
...  

Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.


2010 ◽  
Vol 16 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Rossana C.N. Melo ◽  
Ann M. Dvorak ◽  
Peter F. Weller

AbstractMechanisms governing secretion of proteins underlie the biologic activities and functions of human eosinophils, leukocytes of the innate immune system, involved in allergic, inflammatory, and immunoregulatory responses. In response to varied stimuli, eosinophils are recruited from the circulation into inflammatory foci, where they modulate immune responses through the release of granule-derived products. Transmission electron microscopy (TEM) is the only technique that can clearly identify and distinguish between different modes of cell secretion. In this review, we highlight the advances in understanding mechanisms of eosinophil secretion, based on TEM findings, that have been made over the past years and that have provided unprecedented insights into the functional capabilities of these cells.


2016 ◽  
Vol 174 (12) ◽  
pp. 1704-1718 ◽  
Author(s):  
G Aviello ◽  
UG Knaus

2010 ◽  
Vol 28 (1) ◽  
pp. 192-196 ◽  
Author(s):  
Marie-Luise Berres ◽  
Andreas Nellen ◽  
Hermann E. Wasmuth

Sign in / Sign up

Export Citation Format

Share Document