FUNCTIONAL LOADING AUGMENTS THE INITIAL TENSILE STRENGTH AND ENERGY ABSORPTION CAPACITY OF REGENERATING RABBIT ACHILLES TENDONS

Author(s):  
Chukuka S. Enwemeka
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3335 ◽  
Author(s):  
Seungwon Kim ◽  
Dong Joo Kim ◽  
Sung-Wook Kim ◽  
Cheolwoo Park

Concrete has high compressive strength, but low tensile strength, bending strength, toughness, low resistance to cracking, and brittle fracture characteristics. To overcome these problems, fiber-reinforced concrete, in which the strength of concrete is improved by inserting fibers, is being used. Recently, high-performance fiber-reinforced cementitious composites (HPFRCCs) have been extensively researched. The disadvantages of conventional concrete such as low tensile stress, strain capacity, and energy absorption capacity, have been overcome using HPFRCCs, but they have a weakness in that the fiber reinforcement has only 2% fiber volume fraction. In this study, slurry infiltrated fiber reinforced cementitious composites (SIFRCCs), which can maximize the fiber volume fraction (up to 8%), was developed, and an experimental study on the tensile behavior of SIFRCCs with varying fiber volume fractions (4%, 5%, and 6%) was carried out through direct tensile tests. The results showed that the specimen with high fiber volume fraction exhibited high direct tensile strength and improved brittleness. As per the results, the direct tensile strength is approximately 15.5 MPa, and the energy absorption capacity was excellent. Furthermore, the bridging effect of steel fibers induced strain hardening behavior and multiple cracks, which increased the direct tensile strength and energy absorption capacity.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-long Li ◽  
Ying Xu ◽  
Pei-yuan Chen ◽  
Jin-jin Ge ◽  
Fan Wu

Adding rubber to concrete aims to solve the environmental pollution problem caused by waste rubber and to improve the energy absorption and impact resistance of concrete. In this paper, recycled rubber particles were used to replace fine aggregates in Portland cement concrete to combine the elasticity of rubber with the compression resistance of concrete. Fine aggregates in the concrete mixes were partially replaced with 0%, 20%, 40%, and 60% rubber by volume, and the cement in the concrete mixes was replaced with 0%, 5%, and 10% of silica fume by mass. The properties of the concrete specimens were examined through compressive strength, splitting tensile strength, flexural loading, and rebound tests. Results show that the compressive strength of concrete and the splitting tensile strength decreased to 11.81 and 1.31 MPa after adding silica fume to enhance the strength 37.8% and 23.7%, respectively, and the dosage of rubber was 60%. With the addition of rubber, the impact energy of rubberized concrete was 2.39 times higher than that of ordinary concrete, while its energy absorption capacity was 9.46% higher. The addition of silica fume increased its impact energy by 3.06 times, but the energy absorption capacity did not change significantly. In summary, the RC60SF10 can be used on non-load-bearing structures with high impact resistance requirements. A scanning electron microscope was used to examine and analyze the microstructural properties of rubberized concrete.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa

2011 ◽  
Vol 415-417 ◽  
pp. 2338-2344
Author(s):  
Xin Shen Huang ◽  
Qun Gao ◽  
Zhi Jian Zong

Different laid modes of aluminum alloy section bars and their mortise and tenon joints were bending tested, and their mechanical properties were compared, in order to research on the influence that forming a mortise and tenon joint brought to the original bars. Opening a hole laterally and inserting another shorter bar in the hole changed the bending properties and energy absorption capacity of the original bar. In horizontal laid mode, the mortise and tenon joint was weaker than the original bar when bearing bending load, but it was stronger in vertical laid mode. Weld beads of the mortise and tenon joints were strong enough to maintain the structure integrality before the main section bars were destroyed by load.


Sign in / Sign up

Export Citation Format

Share Document