A COMPARISON OF TWO METHODS OF DETERMINING PERCENT BODY FAT FOR FEMALE COLLEGIATE BASKETBALL PLAYERS.

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S201
Author(s):  
A. K. Andreasen ◽  
R. G. Soule
2017 ◽  
Vol 1 (3) ◽  
pp. 142
Author(s):  
Amita Attlee ◽  
Shaimaa S. Altunaiji ◽  
Mariam Muayyad ◽  
Zainab Ali ◽  
Mona Hashim ◽  
...  

Aim: The aim of the study was to assess the body composition, endurance level and usual nutrient intakes in female players representing a Sports Club in Sharjah, United Arab Emirates.Materials and Methods: Twenty-six adult female players aged between 15-24 years were selected from three different teams (basketball=12, tennis=4, volleyball=10) using convenience sampling technique. All participants were assessed for body composition through bioelectrical impedance method, endurance level using step test and nutrient intakes using 24-hour recall method. Significant differences (P < 0.05) were determined among the three teams in relation to body composition, endurance levels and nutrient intakes.Results: Body composition of players in three sports was significantly different in terms of body mass index, body fat mass, and percentage body fat and fitness scores. Tennis players had significantly higher body fat mass (28.5 ± 8.2 kg) and percent body fat (41 ± 7%) in contrast to that in basketball players (body fat mass: 19.2 ± 10.5 kg; percent body fat: 30.6 + 7.9%) and tennis players (body fat mass: 13 ± 4.2 kg; percent body fat: 26.5 ± 6.5%), respectively. On the other hand, volleyball players had significantly higher fitness score (72.2 ± 3.5) as compared to basketball players (71 ± 6.7), and tennis players (63 ± 8.2).On an average, volleyball players scored “very good” endurance level in contrast to “good” scores in basketball and tennis team players. However, this difference was not statistically significant.The average intakes of all nutrients including energy, protein, vitamins and minerals were below the recommended intakes among players of all sports teams.  Conclusions: Body composition and endurance level differ with the type of sports. Volleyball team players had the lowest BMI, body fat mass as well as percent body fat and highest fitness score and endurance level. However, the overall nutrient intakes of the female players representing the three teams were less than the recommended allowances for highly active women and did not differ with the type of sports played.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katsuhiko Ohori ◽  
Toshiyuki Yano ◽  
Satoshi Katano ◽  
Hidemichi Kouzu ◽  
Suguru Honma ◽  
...  

Abstract Background Although high body mass index (BMI) is a risk factor of heart failure (HF), HF patients with a higher BMI had a lower mortality rate than that in HF patients with normal or lower BMI, a phenomenon that has been termed the “obesity paradox”. However, the relationship between body composition, i.e., fat or muscle mass, and clinical outcome in HF remains unclear. Methods We retrospectively analyzed data for 198 consecutive HF patients (76 years of age; males, 49%). Patients who were admitted to our institute for diagnosis and management of HF and received a dual-energy X-ray absorptiometry scan were included regardless of left ventricular ejection fraction (LVEF) categories. Muscle wasting was defined as appendicular skeletal muscle mass index < 7.0 kg/m2 in males and < 5.4 kg/m2 in females. Increased percent body fat mass (increased FM) was defined as percent body fat > 25% in males and > 30% in females. Results The median age of the patients was 76 years (interquartile range [IQR], 67–82 years) and 49% of them were male. The median LVEF was 47% (IQR, 33–63%) and 33% of the patients had heart failure with reduced ejection fraction. Increased FM and muscle wasting were observed in 58 and 67% of the enrolled patients, respectively. During a 180-day follow-up period, 32 patients (16%) had cardiac events defined as cardiac death or readmission by worsening HF or arrhythmia. Kaplan-Meier survival curves showed that patients with increased FM had a lower cardiac event rate than did patients without increased FM (11.4% vs. 22.6%, p = 0.03). Kaplan-Meier curves of cardiac event rates did not differ between patients with and those without muscle wasting (16.5% vs. 15.4%, p = 0.93). In multivariate Cox regression analyses, increased FM was independently associated with lower cardiac event rates (hazard ratio: 0.45, 95% confidence interval: 0.22–0.93) after adjustment for age, sex, diabetes, muscle wasting, and renal function. Conclusions High percent body fat mass is associated with lower risk of short-term cardiac events in HF patients.


1980 ◽  
Vol 50 (2) ◽  
pp. 547-552
Author(s):  
Michael Young ◽  
T. Gilmour Reeve

The purpose of the study was to determine whether individuals with high percent body fat can be distinguished on the basis of personality and body-image from those possessing lower levels of body fat. 65 female college students were administered the 16 Personality Factor Questionnaire and the Secord and Jourard Body-cathexis Scale. Measurements of height, weight, and skin folds at the triceps and illiac crest were also taken. On the basis of percent body fat two groups of 20 females each (high and low percent body fat) were identified. From discriminant analyses one personality factor and six body-image items were identified which distinguished between groups. Reclassification of the subjects, based upon derived discriminant functions, resulted in 60.0% of the subjects being correctly reclassified from personality data and 100% of the subjects correctly reclassified from body-image data. Body-image appears to be an important factor that can distinguish between individuals possessing high and low levels of body fat.


Author(s):  
Jinshu Zeng ◽  
Jing Xu ◽  
Yuanhong Xu ◽  
Wu Zhou ◽  
Fei Xu

The aim of the study was to investigate the effects of 4-week small-sided games (SSG) and high-intensity interval training with changes of direction (HIT-COD) on physical performance and specific technical skills in female collegiate basketball players. Nineteen players were divided into SSG (n = 9) and HIT-COD (n = 10) groups, that performed either SSG or HIT-COD three times per week for 4 weeks during the pre-season. Players’ heart rate (HR) and perceived exertion responses (RPE) were assessed during the intervention. Before and after the intervention period, performances were assessed with 30-15 intermittent fitness test (30-15IFT), repeated sprint ability (RSA) test, modified agility T-test (MAT), countermovement jump (CMJ), 20-m sprint, shooting accuracy test, 1 min shooting test, passing test, defensive movement test and control dribble test. Both training interventions led to similar physiological and perceived exertion responses, showing no significant differences in HR ( P = .49, d = 0.2) and RPE ( P = .77, d = 0.1) between groups. Significant improvements were observed in 30-15IFT (SSG: 4.1%, d = 1.5; HIT-COD: 4.2%, d = 1.7), RSAmean (SSG: −2.2%, d = 1.0; HIT-COD: −1.9%, d = 1.0), RSAbest (SSG: −2.0%, d = 0.9; HIT-COD: −2.1%, d = 1.1), MAT (SSG: −7.2%, d = 1.7; HIT-COD: 5.7%, d = 1.5), defensive movement test (SSG: −5.1%, d = 2.1; HIT-COD: −5.8%, d = 1.8) and control dribble test (SSG: −3.4%, d = 1.0; HIT-COD: −2.6%, d = 1.0). The only significant group × time interaction was found ( P = .032, [Formula: see text] = 0.24), with SSG improving 1 min shooting (22.4%, d = 1.0) and HIT-COD performing slightly worse (−2.6%, d = 0.1) after a 4-week intervention. The current study suggests that using SSG is more effective than HIT-COD for female collegiate basketball players in pre-season, since SSG improves physical performance and basketball-specific movements as well as shooting abilities after a 4-week intervention.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Elizabeth A. Thomas ◽  
Adnin Zaman ◽  
Marc-Andre Cornier ◽  
Victoria A. Catenacci ◽  
Emma J. Tussey ◽  
...  

Accumulating evidence suggests that later timing of energy intake (EI) is associated with increased risk of obesity. In this study, 83 individuals with overweight and obesity underwent assessment of a 7-day period of data collection, including measures of body weight and body composition (DXA) and 24-h measures of EI (photographic food records), sleep (actigraphy), and physical activity (PA, activity monitors) for 7 days. Relationships between body mass index (BMI) and percent body fat (DXA) with meal timing, sleep, and PA were examined. For every 1 h later start of eating, there was a 1.25 (95% CI: 0.60, 1.91) unit increase in percent body fat (False Discovery Rate (FDR) adjusted p value = 0.010). For every 1 h later midpoint of the eating window, there was a 1.35 (95% CI: 0.51, 2.19) unit increase in percent body fat (FDR p value = 0.029). For every 1 h increase in the end of the sleep period, there was a 1.64 (95% CI: 0.56, 2.72) unit increase in percent body fat (FDR p value = 0.044). Later meal and sleep timing were also associated with lower PA levels. In summary, later timing of EI and sleep are associated with higher body fat and lower levels of PA in people with overweight and obesity.


Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Aaron Heishman ◽  
Brady Brown ◽  
Bryce Daub ◽  
Ryan Miller ◽  
Eduardo Freitas ◽  
...  

The purpose of the present investigation was to evaluate differences in Reactive Strength Index Modified (RSIMod) and Flight Time to Contraction Time Ratio (FT:CT) during the countermovement jump (CMJ) performed without the arm swing (CMJNAS) compared to the CMJ with the arm swing (CMJAS), while exploring the relationship within each variable between jump protocols. A secondary purpose sought to explore the relationship between RSIMod and FT:CT during both jump protocols. Twenty-two collegiate basketball players performed both three CMJNAS and three CMJAS on a force plate, during two separate testing sessions. RSIMod was calculated by the flight-time (RSIModFT) and impulse-momentum methods (RSIModIMP). CMJ variables were significantly greater during the CMJAS compared to CMJNAS (p < 0.001). There were large to very large correlations within each variable between the CMJAS and CMJNAS. There were significant positive correlations among RSIModFT, RSIModIMP, and FT:CT during both the CMJAS (r ≥ 0.864, p < 0.001) and CMJNAS (r ≥ 0.960, p < 0.001). These findings identify an increase in RSIMod or FT:CT during the CMJAS, that may provide independent information from the CMJNAS. In addition, either RSIMod or FT:CT may be utilized to monitor changes in performance, but simultaneous inclusion may be unnecessary.


2016 ◽  
Vol 41 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Alexandra P Frost ◽  
Tracy Norman Giest ◽  
Allison A Ruta ◽  
Teresa K Snow ◽  
Mindy Millard-Stafford

Background: Body composition is important for health screening, but appropriate methods for unilateral lower extremity amputees have not been validated. Objectives: To compare body mass index adjusted using Amputee Coalition equations (body mass index–Amputee Coalition) to dual-energy X-ray absorptiometry in unilateral lower limb amputees. Study design: Cross-sectional, experimental. Methods: Thirty-eight men and women with lower limb amputations (transfemoral, transtibial, hip disarticulation, Symes) participated. Body mass index (mass/height2) was compared to body mass index corrected for limb loss (body mass index–Amputee Coalition). Accuracy of classification and extrapolation of percent body fat with body mass index was compared to dual-energy X-ray absorptiometry. Results: Body mass index–Amputee Coalition increased body mass index (by ~ 1.1 kg/m2) but underestimated and mis-classified 60% of obese and overestimated 100% of lean individuals according to dual-energy X-ray absorptiometry. Estimated mean percent body fat (95% confidence interval) from body mass index–Amputee Coalition (28.3% (24.9%, 31.7%)) was similar to dual-energy X-ray absorptiometry percent body fat (29.5% (25.2%, 33.7%)) but both were significantly higher ( p < 0.05) than percent body fat estimated from uncorrected body mass index (23.6% (20.4%, 26.8%)). However, total errors for body mass index and body mass index–Amputee Coalition converted to percent body fat were unacceptably large (standard error of the estimate = 6.8%, 6.2% body fat) and the discrepancy between both methods and dual-energy X-ray absorptiometry was inversely related ( r = −0.59 and r = −0.66, p < 0.05) to the individual’s level of body fatness. Conclusions: Body mass index (despite correction) underestimates health risk for obese patients and overestimates lean, muscular individuals with lower limb amputation. Clinical relevance Clinical recommendations for an ideal body mass based on body mass index–Amputee Coalition should not be relied upon in lower extremity amputees. This is of particular concern for obese lower extremity amputees whose health risk might be significantly underestimated based on body mass index despite a “correction” formula for limb loss.


Sign in / Sign up

Export Citation Format

Share Document