Induction of mu opioid and cannabinoid receptors by probiotics: A new mechanism of regulation of visceral pain perception

2007 ◽  
Vol 13 ◽  
pp. 652-653
Author(s):  
C Rousseaux ◽  
X Thuru ◽  
A Gelot ◽  
N Barnich ◽  
C Neut ◽  
...  
2019 ◽  
Vol 26 (12) ◽  
pp. 1618-1625 ◽  
Author(s):  
Xue Shen ◽  
Hua Duan ◽  
Sha Wang ◽  
Wei Hong ◽  
Yu-Yan Wang ◽  
...  

The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.


Author(s):  
Ali Gholamrezaei ◽  
Ilse Van Diest ◽  
Qasim Aziz ◽  
Ans Pauwels ◽  
Jan Tack ◽  
...  

2008 ◽  
Vol 109 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Alex T. Sia ◽  
Yvonne Lim ◽  
Eileen C. P. Lim ◽  
Rachelle W. C. Goh ◽  
Hai Yang Law ◽  
...  

Background Previous studies have shown that genetic variability at position 118 of the human mu-opioid receptor gene altered patients' response to intravenous morphine. The purpose of this study was to investigate whether this polymorphism contributes to the variability in response to morphine for postcesarean analgesia. Methods After investigators obtained informed consent, 588 healthy women received 0.1 mg intrathecal morphine for postcesarean analgesia. Their blood samples were genotyped for the A118G polymorphism-A118 homozygous (AA), heterozygous (AG), or homozygous for the G allele (GG). Pain scores, the severity of nausea and vomiting, the incidence of pruritus, and the total self-administered intravenous morphine were recorded for the first 24 postoperative hours. Results Two hundred seventy women (46%) were AA, 234 (40%) were AG, and 82 (14%) were GG. The 24-h self-administered intravenous morphine consumption was lowest in the AA group (P = 0.001; mean, 5.9; 95% confidence interval, 5.1-6.8) versus the AG (8.0; 6.9-9.1) and GG groups (9.4; 7.3-11.5). Pain scores were lowest in the AA group and highest in the GG group, with a statistically significant difference detected between AA, AG, and GG (P = 0.049). Total morphine consumption was also influenced by patients' age and paying status. AA group was associated with the highest incidence of nausea (26 of 272 [9.6%]; P = 0.02) versus the other two groups (13 of 234 [5.6%] and 1 of 82 [1.2%] for AG and GG, respectively). Conclusion Genetic variation at position 118 of the mu-opioid receptor is associated with interindividual differences in pain scores, self-administered intravenous morphine, and the incidence of nausea postoperatively.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Andrea Toschi ◽  
Giorgia Galiazzo ◽  
Andrea Piva ◽  
Claudio Tagliavia ◽  
Gemma Mazzuoli-Weber ◽  
...  

An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.


2021 ◽  
Author(s):  
Esther Benedetti ◽  
James Burnett ◽  
Meredith Degnan ◽  
Danielle Horne ◽  
Andres Missair ◽  
...  

The neuronal, chemical, and electrical transmission of pain is a complex and intricate subject that continues to be studied and expounded. This review discusses the relevant physiology and influential factors contributing to the experience and subjective variation in a variety of acute and chronic pain presentations. This review contains 4 figures, 4 tables, and 30 references Keywords: acute pain, chronic pain, somatic pain, neuropathic pain, visceral pain, nociception, pain perception, gender-related pain, cancer pain, spine pain


2014 ◽  
Vol 146 (5) ◽  
pp. S-536
Author(s):  
Clive H. Wilder-Smith ◽  
Lukas Van Oudenhove ◽  
Xinhua Li ◽  
Khek-Yu Ho ◽  
Reuben K. Wong

2007 ◽  
Vol 293 (4) ◽  
pp. G749-G757 ◽  
Author(s):  
Niels Eijkelkamp ◽  
Annemieke Kavelaars ◽  
Sigrid Elsenbruch ◽  
Manfred Schedlowski ◽  
Gerald Holtmann ◽  
...  

During acute and chronic inflammation visceral pain perception is altered. Conflicting data exist, however, on visceral pain perception in the postinflammatory phase. The aim of the present study was to investigate whether visceral pain perception is altered after resolution of dextran sodium sulfate (DSS)-induced inflammation of the colon. Visceral sensory function in mice was assessed by monitoring behavioral responses to intracolonic capsaicin instillation. Two hours later the number of c-Fos-positive neurons in lamina I/II and X of spinal cord segments T12/13–S1 was determined as a measure of neuronal activation. DSS colitis was induced by adding 1% of DSS to the drinking water. The course of DSS-induced colitis was assessed by determining the disease activity index score. Animals developed a transient colitis and had recovered at day 49. At this time point, cytokine levels and colon length were similar to control animals. Importantly, after resolution of DSS-induced colitis the behavioral response to intracolonic capsaicin was increased compared with control mice. Moreover, capsaicin-induced spinal cord neuronal c-Fos expression was significantly increased. Interestingly, after colitis animals also exhibited referred somatic hyperalgesia as measured with von Frey hairs on the abdominal wall. We conclude that postinflammatory visceral hyperalgesia occurs after resolution of DSS-induced colitis and that capsaicin-induced behavioral responses and spinal cord neuronal c-Fos activation are effective readouts for determination of visceral pain perception.


2020 ◽  
Author(s):  
Pilar Sánchez-Blázquez ◽  
Elsa Cortés-Montero ◽  
María Rodríguez-Muñoz ◽  
Manuel Merlos ◽  
Javier Garzón-Niño

Abstract The Sigma-1 receptor (σ1R) has emerged as an interesting pharmacological target because it inhibits analgesia mediated by mu-opioid receptors (MOR) and is also implicated in the development of neuropathic pain. Based on these findings, the recent cloning of the Sigma-2 receptor (σ2R) led us to investigate its potential role as a regulator of opioid analgesia and of pain hypersensitivity in σ2R knockout mice. σ2R-/- animals developed mechanical allodynia following establishment of chronic constriction injury-induced neuropathic pain, which was alleviated by the σ1R antagonist S1RA. The analgesic effects of morphine, [D-Ala, N-MePhe, Gly-ol]-encephalin (DAMGO) and β-endorphin increased in σ1R-/- mice and diminished in σ2R-/- mice. The analgesic effect of morphine was increased in σ2R-/- mice by treatment with S1RA. However, σ2R-/- mice and wild-type mice exhibited comparable antinociceptive responses to the delta receptor agonist [D-Pen2,5]-encephalin (DPDPE), the cannabinoid type 1 receptor agonist WIN55212-2 and the alfa2-adrenergic receptor agonist clonidine. These findings suggest that σ2R and σ1R have selective regulatory effects on MOR-mediated analgesia, with σ2R promoting MOR-mediated analgesia and σ1R inhibiting it. Our study may help identify new pharmacological targets for diminishing pain perception and improving opioid detoxification therapies.


Sign in / Sign up

Export Citation Format

Share Document