Central and Peripheral Nervous System

2021 ◽  
Author(s):  
Esther Benedetti ◽  
James Burnett ◽  
Meredith Degnan ◽  
Danielle Horne ◽  
Andres Missair ◽  
...  

The neuronal, chemical, and electrical transmission of pain is a complex and intricate subject that continues to be studied and expounded. This review discusses the relevant physiology and influential factors contributing to the experience and subjective variation in a variety of acute and chronic pain presentations. This review contains 4 figures, 4 tables, and 30 references Keywords: acute pain, chronic pain, somatic pain, neuropathic pain, visceral pain, nociception, pain perception, gender-related pain, cancer pain, spine pain

2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


1999 ◽  
Vol 57 (3B) ◽  
pp. 753-760 ◽  
Author(s):  
TEREZINHA DE JESUS T. SANTOS ◽  
CARLOS M. DE CASTRO-COSTA ◽  
SÍLVIO D. A. GIFFONI ◽  
FRANKLIN J. C. SANTOS ◽  
RODRIGO S. N. RAMOS ◽  
...  

Baclofen (beta-p-chlorophenyl-GABA) has been used in humans to treat spasticity, as well as trigeminal neuralgia. Since GABA (gamma-aminobutyric acid) has been implicated in inhibitory and analgesic effects in the nervous system, it was of interest to study the effect of baclofen in experimental neuropathic pain. With this purpose, experiments were carried out in 17 neuropathic rats with constrictive sciatic injury, as described by Bennet and Xie (1988), taking as pain parameters scratching behaviour and the latency to the thermal nociceptive stimulus. The results showed that baclofen induces, in a dose-dependent manner, significant decrease (p < 0.05) of scratching behaviour and significant increase (p < 0.05) of the latency to the nociceptive thermal stimulus. The absence of antagonism of naloxone suggested a non-participation of an opioid-mediated mechanism in this analgesic effect of baclofen on experimental neuropathic pain.


2019 ◽  
Vol 15 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Tony O’Brien, MB, FRCPI ◽  
Jin Seok Ahn, MD ◽  
Richard Chye, MBBS, FRACP, FFPMANZCA, FAChPM ◽  
Brian Le, MBBS (Hons), MPH, FRACP, FAChPM ◽  
Henry Lu, MD, DABPN, DPBPM ◽  
...  

Transdermal buprenorphine (TDB) has demonstrated effectiveness in treating a range of chronic pain conditions, including cancer pain, nociceptive pain, and neuropathic pain and has a favorable safety profile. Worldwide, clinical experience of its use is relatively limited. There is considerable misunderstanding about the pharmacology, mechanism of action, and safety of buprenorphine. There is also limited guidance on the appropriate use of TDB for chronic pain management. This article presents an overview of TDB and also provides practical recommendations for its use as part of a multifaceted strategy in chronic cancer and non-cancer pain.


1997 ◽  
Vol 20 (3) ◽  
pp. 435-437 ◽  
Author(s):  
Misha-Miroslav Backonja

Dysfunction or injury of pain-transmitting primary afferents' central pathways can result in pain. The organism as a whole responds to such injury and consequently many symptoms of neuropathic pain develop. The nervous system responds to painful events and injury with neuroplasticity. Both peripheral sensitization and central sensitization take place and are mediated by a number of biochemical factors, including genes and receptors. Correction of altered receptors activity is the logical way to intervene therapeutically. [berkley; blumberg et al.; coderre & katz; dickenson; mcmahon; wiesenfeld-hallinet al.]


2021 ◽  
Vol 12 ◽  
Author(s):  
Huan-Jun Lu ◽  
Yuan-Yuan Fu ◽  
Qian-Qi Wei ◽  
Zhi-Jun Zhang

In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.


2021 ◽  
Vol 2 ◽  
Author(s):  
David L. Cedeño ◽  
Courtney A. Kelley ◽  
Krishnan Chakravarthy ◽  
Ricardo Vallejo

Glial cells play an essential role in maintaining the proper functioning of the nervous system. They are more abundant than neurons in most neural tissues and provide metabolic and catabolic regulation, maintaining the homeostatic balance at the synapse. Chronic pain is generated and sustained by the disruption of glia-mediated processes in the central nervous system resulting in unbalanced neuron–glial interactions. Animal models of neuropathic pain have been used to demonstrate that changes in immune and neuroinflammatory processes occur in the course of pain chronification. Spinal cord stimulation (SCS) is an electrical neuromodulation therapy proven safe and effective for treating intractable chronic pain. Traditional SCS therapies were developed based on the gate control theory of pain and rely on stimulating large Aβ neurons to induce paresthesia in the painful dermatome intended to mask nociceptive input carried out by small sensory neurons. A paradigm shift was introduced with SCS treatments that do not require paresthesia to provide effective pain relief. Efforts to understand the mechanism of action of SCS have considered the role of glial cells and the effect of electrical parameters on neuron–glial interactions. Recent work has provided evidence that SCS affects expression levels of glia-related genes and proteins. This inspired the development of a differential target multiplexed programming (DTMP) approach using electrical signals that can rebalance neuroglial interactions by targeting neurons and glial cells differentially. Our group pioneered the utilization of transcriptomic and proteomic analyses to identify the mechanism of action by which SCS works, emphasizing the DTMP approach. This is an account of evidence demonstrating the effect of SCS on glia-mediated processes using neuropathic pain models, emphasizing studies that rely on the evaluation of large sets of genes and proteins. We show that SCS using a DTMP approach strongly affects the expression of neuron and glia-specific transcriptomes while modulating them toward expression levels of healthy animals. The ability of DTMP to modulate key genes and proteins involved in glia-mediated processes affected by pain toward levels found in uninjured animals demonstrates a shift in the neuron–glial environment promoting analgesia.


Author(s):  
Philip Wiffen ◽  
Marc Mitchell ◽  
Melanie Snelling ◽  
Nicola Stoner

Pain: a definition 396Assessment of pain 398Acute pain: incidence 401Acute pain 402Treating cancer pain 404Equianalgesic doses for opioids 406Compatibility of drugs in pain and palliative care 407Chronic pain 408The International Association for the Study of Pain defines pain as ‘...


2021 ◽  
pp. 204946372110471
Author(s):  
Sumitra Bakshi ◽  
Meenal Rana ◽  
Ashish Gulia ◽  
Ajay Puri ◽  
Tadala SS Harsha ◽  
...  

Background Hemipelvectomy is a major surgery most often performed for pelvic malignancy. These complex surgeries often involve dissection around major neurovascular bundle and resection of tumour being bone along with involved tissues. This may result in short and long term morbidities. There is very little literature about incidence of chronic pain after pelvic resections. We conducted a prospective study at a tertiary cancer hospital to assess the prevalence of chronic pain post hemipelvectomy. Method This is a single centre prospective observational study conducted over 30 months. Pain scores were recorded using Brief pain inventory (BPI) and pain detect questionnaire. The quality of life was assessed using musculoskeletal tumour society (MSTS) score. Intra-operative details like extent of surgical resection, nerves spared, details of intra-operative and post-operative analgesia were retrieved from the patient files. Data were analysed using SPSS 21 version. Results Neuropathic pain post hemipelvectomy was uncommon. The prevalence of mild to moderate somatic pain was around 30%. Functional limitation was minimal as assessed by BPI and MSTS score. A high incidence of numbness was seen to persist in and around the area of surgical incision (50%). Conclusion This is first study to report the incidence of chronic pain post hemipelvectomy done for pelvic tumour resections. Despite the extensive nature of resection involved, there is a low prevalence of neuropathic pain in this population. However, incidence of persistent somatic pain is high and there is a need for further studies for evaluating the causality


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Abhijit Nair ◽  
Subodh Kamtikar ◽  
Suresh Seelam

AbstractGabapentin and pregabalin, known as gabapentinoids, have been used effectively as a monotherapy or in combination with other agents for managing chronic neuropathic pain due to various etiologies. These drugs act via α2δ-1 and α2δ-2 subunits of voltage-gated calcium channels (VGCCs) non-selectively. Due to its non-selective action, a certain group of patients reports central nervous system adverse effects like dizziness, drowsiness, somnolence, and cerebellar ataxia.Mirogabalin besylate is an orally administered next-generation gabapentinoid approved for use in diabetic neuropathy and post-herpetic neuralgia. It binds selectively and with greater affinity to the α2δ-1 and α2δ-2 subunits of human VGCCs and thus has lesser central nervous system adverse events making it more tolerable. We reviewed all articles in various categories, published in reputed databases since 2014 where mirogabalin was used to treat chronic neuropathic pain. Case series and open-label studies have demonstrated the safety and efficacy of mirogabalin in cancer pain and lumbar spine disease. Pharmacokinetic/pharmacodynamic studies have cautioned using full dose in patients with renal/hepatic impairment and along with drugs that could lead to adverse effects like sedatives and opioids. Dose up to 30 mg/day when administered as a twice-daily divided dose has been tolerated quite well with adequate pain relief in diabetic neuropathy and post-herpetic neuralgia.Mirogabalin appears to be a safe gabapentinoid in diabetic neuropathy and post-herpetic neuralgia. Further studies need to be conducted to explore the role of mirogabalin in cancer pain, postoperative pain, and neuropathic pain due to various other etiologies.


2019 ◽  
Vol 61 (3) ◽  
pp. 59-63
Author(s):  
R. Van Rensburg ◽  
H. Reuter

Pain is classified by various descriptions. Chronic pain has been described as being neuropathic (due to nervous system lesions), nociceptive (due to tissue damage), or mixed (a combination of neuropathic and nociceptive). The addition of the term nociplastic pain is used to describe patients who experience chronic pain without tissue damage or nervous system lesions. Chronic pain is often difficult to manage, particularly neuropathic pain. Evidence-based pharmacological treatment options include anticonvulsants and antidepressants. The choice of medication will depend on various factors, including patient profile, type of pain, and associated conditions. Medications with the best evidence of efficacy for first-line use in neuropathic pain are the gabapentinoids, carbamazepine, the tricyclic antidepressants, and the serotonin-noradrenaline reuptake inhibitors duloxetine and venlafaxine. The cannabinoids and ketamine are being actively investigated for use in chronic pain. Currently the cannabinoids’ potential benefit is outweighed by the adverse effects, and recommendations for the use of ketamine is limited by its parenteral route of administration and low evidence of efficacy in chronic pain.


Sign in / Sign up

Export Citation Format

Share Document