scholarly journals Maternal exercise and its beneficial effects on glucose metabolism in offspring

2020 ◽  
Vol 133 (7) ◽  
pp. 863-867
Author(s):  
Jia Zheng ◽  
Li-Yuan Zhou ◽  
Xin-Hua Xiao
2021 ◽  
Author(s):  
Carmelo Quarta ◽  
Kerstin Stemmer ◽  
Aaron Novikoff ◽  
Bin Yang ◽  
Felix Klingelhuber ◽  
...  

Abstract Dual-agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPAR𝛼/𝛾) have shown beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to unfavorable cardiovascular and/or renal effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPAR𝛼/𝛾 dual-agonist Tesaglitazar to GLP-1 to allow for the GLP-1 receptor-dependent delivery of Tesaglitazar. GLP-1/Tesaglitazar does not differ from matched GLP-1 in GLP-1R signaling, but shows GLP-1R-dependent PPAR𝛾-RXR heterodimerization with enhanced efficacy to improve body weight, food intake, and glucose metabolism relative to GLP-1 or Tesaglitazar in mice with diet- and genetically-induced obesity. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout (ko) mice and shows preserved effects in DIO mice at doses subthreshold for GLP-1 and Tesaglitazar to improve metabolism. Consistent with the GLP-1R expression pattern, LC/MS-based proteomics identified a series of novel PPAR protein targets in the hypothalamus that are acutely upregulated by Tesaglitazar and by GLP-1/Tesaglitazar, but not by treatment with GLP-1. Collectively, our data show that GLP-1/Tesaglitazar improves energy and glucose metabolism with superior efficacy to GLP-1 or Tesaglitazar alone and suggest that this conjugate holds therapeutic value to treat hyperglycemia and insulin resistance.


2016 ◽  
Vol 229 (2) ◽  
pp. R57-R66 ◽  
Author(s):  
Antonella Amato ◽  
Sara Baldassano ◽  
Flavia Mulè

Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.


2018 ◽  
Author(s):  
Jung Ok Lee ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Jeong Ah Han ◽  
Min Ju Kang ◽  
...  

AbstractMeteorin-like (metrnl) is a recently identified adipomyokine that has beneficial effects on glucose metabolism. However, its underlying mechanism of action is not completely understood. In this study, we have shown that a level of metrnl increase in vitro under electrical-pulse-stimulation (EPS) and in vivo in exercise mice, suggesting that metrnl is an exercise-induced myokine. In addition, metrnl increases glucose uptake through the calcium-dependent AMPK pathway. Metrnl also increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPK-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. The intraperitoneal injection of recombinant metrnl improves glucose tolerance in mice with high fat-induced obesity or type 2 diabetes (db/db), but this is not seen in AMPK β1β2 muscle-specific null mice (AMPK β1β2 MKO). In conclusion, we have demonstrated that metrnl induces beneficial effects on glucose metabolism via AMPK and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-5
Author(s):  
Qunhua Jin ◽  

Most researchers have recognized the beneficial effects of exercise on bone formation in the organism. Irisin released from muscles is considered to be the link between muscles and other organs, and its main function is to change subcutaneous and visceral adipose tissue into brown adipose tissue, with a consequent increase in thermogenesis. Irisin can regulate glucose metabolism, bone metabolic homeostasis, and systemic inflammatory response


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiwu Wang ◽  
Zhaoting Lv ◽  
Qian Wu ◽  
Huitao Liu ◽  
Yanrou Gu ◽  
...  

ObjectiveThere is growing evidence that testosterone may be implicated in the pathogenesis of Alzheimer’s disease (AD). We aimed to examine the relationship between plasma total testosterone levels and change in brain glucose metabolism over time among non-demented older people.MethodsThe association of plasma total testosterone levels with change in brain glucose metabolism among non-demented older people was investigated cross-sectionally and longitudinally. Given a significant difference in levels of plasma total testosterone between gender, we performed our analysis in a sex-stratified way. At baseline, 228 non-demented older people were included: 152 males and 76 females.ResultsIn the cross-sectional analysis, no significant relationship between plasma total testosterone levels and brain glucose metabolism was found in males or females. In the longitudinal analysis, we found a significant association of plasma total testosterone levels with change in brain glucose metabolism over time in males, but not in females. More specifically, in males, higher levels of total testosterone in plasma at baseline were associated with slower decline in brain glucose metabolism.ConclusionWe found that higher levels of total testosterone in plasma at baseline were associated with slower decline in brain glucose metabolism in males without dementia, indicating that testosterone may have beneficial effects on brain function.


2019 ◽  
Vol 105 (1) ◽  
pp. 362-373 ◽  
Author(s):  
Andreas Brønden ◽  
Filip K Knop

Abstract Context The discovery and characterization of the bile acid specific receptors farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) have facilitated a wealth of research focusing on the link between bile acid physiology and glucose metabolism. Modulation of FXR and TGR5 activation have been demonstrated to affect the secretion of glucagon-like peptide 1, insulin, and glucagon as well as energy expenditure and gut microbiota composition, with potential beneficial effects on glucose metabolism. Evidence Acquisition A search strategy based on literature searches in on PubMed with various combinations of the key words FXR, TGR5, agonist, apical sodium-dependent bile acid transporter (ASBT), bile acid sequestrant, metformin, and glucose metabolism has been applied to obtain material for the present review. Furthermore, manual searches including scanning of reference lists in relevant papers and conference proceedings have been performed. Evidence Synthesis This review provides an outline of the link between bile acid and glucose metabolism, with a special focus on the gluco-metabolic impact of treatment modalities with modulating effects on bile acid physiology; including FXR agonists, TGR5 agonists, ASBT inhibitors, bile acid sequestrants, and metformin. Conclusions Any potential beneficial gluco-metabolic effects of FXR agonists remain to be established, whereas the clinical relevance of TGR5-based treatment modalities seems limited because of substantial safety concerns of TGR5 agonists observed in animal models. The glucose-lowering effects of ASBT inhibitors, bile acid sequestrants, and metformin are at least partly mediated by modulation of bile acid circulation, which might allow an optimization of these bile acid–modulating treatment modalities. (J Clin Endocrinol Metab 106: 362–373, 2020)


2018 ◽  
Vol 10 (4) ◽  
pp. 502-506 ◽  
Author(s):  
R. Tarevnic ◽  
F. Ornellas ◽  
C. A. Mandarim-de-Lacerda ◽  
M. B. Aguila

AbstractWe aimed to evaluate the impact of maternal exercise training on the offspring metabolism and body size caused by father obesity. C57BL/6 male 4-week-old mice were fed a high-fat diet (HF father) or control diet (C father), while equal age female mice were fed only a C diet and were separated into two groups: trained (T mother) and non-trained (NT mother), and at 12 weeks of age mice were mated. A continuous swimming protocol was applied for 10 weeks (before and during gestation), and offspring were followed since weaning until sacrifice (at 12 weeks of age). HF father, compared to C father, showed obesity, elevated total cholesterol (TC) and triglycerides (TG), and glucose intolerance. Both sexes HF/NT offspring showed hyperglycemia, glucose intolerance and high levels of TC and TG, without obesity. However, HF/T offspring showed data close to C/NT, demonstrating the beneficial effect of maternal exercise in the offspring of obese fathers.


2015 ◽  
Vol 114 (8) ◽  
pp. 1218-1225 ◽  
Author(s):  
Tracey M. Robertson ◽  
Michael N. Clifford ◽  
Simon Penson ◽  
Gemma Chope ◽  
M. Denise Robertson

AbstractPrevious studies regarding the acute effects of coffee on glycaemic control have used a single large dose of coffee, typically containing the caffeine equivalent of 2–4 servings of coffee. This study investigates whether the acute effects of coffee are dose-dependent, starting with a single serving. A total of ten healthy overweight males participated in a two-part randomised double-blind cross-over study. In the first part, they ingested 2, 4 or 8 g instant decaffeinated coffee (DC) dissolved in 400 ml water with caffeine added in proportion to the DC (total 100, 200 or 400 mg caffeine) or control (400 ml water) all with 50 g glucose. In the second part, they ingested the same amounts of DC (2, 4, 8 g) or control, but with a standard 100 mg caffeine added to each. Capillary blood samples were taken every 15 min for 2 h after each drink and glucose and insulin levels were measured. Repeated measures ANOVA on glucose results found an effect when caffeine was varied in line with DC (P=0·008). Post hoc analysis revealed that both 2 and 4 g DC with varied caffeine content increased the glycaemic response v. control. There was no effect of escalating doses of DC when caffeine remained constant at 100 mg. These results demonstrate that one standard serving of coffee (2 g) is sufficient to affect glucose metabolism. Furthermore, the amount of caffeine found in one serving (100 mg) is sufficient to mask any potential beneficial effects of increasing other components. No dose-dependent effect was found.


Sign in / Sign up

Export Citation Format

Share Document