Antioxidant Properties of an Endogenous Thiol: Alpha-lipoic Acid, Useful in the Prevention of Cardiovascular Diseases

2009 ◽  
Vol 54 (5) ◽  
pp. 391-398 ◽  
Author(s):  
Stéliana Ghibu ◽  
Carole Richard ◽  
Catherine Vergely ◽  
Marianne Zeller ◽  
Yves Cottin ◽  
...  
2021 ◽  
Vol 22 (15) ◽  
pp. 7979
Author(s):  
Luc Rochette ◽  
Steliana Ghibu

Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The “cytokine storm” observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to “acute respiratory distress syndrome” (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues’ homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.


2014 ◽  
Vol 92 (9) ◽  
pp. 773-779 ◽  
Author(s):  
Rania H. Abdou ◽  
Mohamed M. Abdel-Daim

Alpha-lipoic acid (ALA) is a natural dithiol compound, with a free radical scavenger and biological antioxidant properties. The purpose of the current study was to investigate the protective effects of ALA on biochemical alteration and oxidative stress induced by acute deltamethrin intoxication in rats. Markers of liver and kidney injuries in serum of deltamethrin-intoxicated as well as ALA-pretreated rats were analyzed. Moreover, serum and (or) tissue lipid peroxidation, malondialdehyde and antioxidant markers, reduced glutathione, catalase, superoxide dismutase activity, and total antioxidant capacity were evaluated. The results showed that all parameters were altered in the intoxicated group, indicating hepatorenal oxidative damage of deltamethrin. Pre-treatment with ALA reversed the changes in most of the studied parameters in a dose-dependent manner. Histopathological and biochemical findings were parallel. It can be concluded that ALA may be a promising therapeutic option for prevention and (or) treatment of deltamethin toxicity.


2020 ◽  
Vol 19 (2) ◽  
pp. 172-175
Author(s):  
Serkan Sayıner ◽  
Ahmet Özer Şehirli ◽  
Nedime Serakıncı

SARS-CoV-2 infection has led to COVID-19 outbreak worldwide. To date, a specific antiviral drug does not exist to treat the disease and control the virus. In this paper, we have explored the potential utility of alpha lipoic acid, an anti-inflammatory and antioxidant molecule, for treatment. Alpha lipoic acid exhibits strong antioxidant properties and modulates the immune system by regulating T cell activation making it a useful therapeutic candidate for cytokine storm triggering SARS-CoV-2 infection. In the present communication, we focused on the therapeutic potential of ALA with respect to its potential role on reducing the severity of symptoms and the adverse effects of other antiviral drugs used. We consider different mechanisms by which modulating ACE2 levels after virus replication and preventing cytokine storm and also focus on a new therapeutic venue that utilizes ALA.


2010 ◽  
Vol 3 (3) ◽  
pp. 206-213 ◽  
Author(s):  
Pinar Atukeren ◽  
Seval Aydin ◽  
Ezel Uslu ◽  
MKoray Gumustas ◽  
Ufuk Cakatay

Albumin represents the predominant circulating antioxidant agent in plasma exposed to continuous oxidative stress and a change in serum albumin structure accounts for its antioxidant properties. Alterations in the redox status of albumin may result in impairments of its biological properties. Alpha-lipoic acid (LA), a naturally occurring thiol compound found in virtually all species, is a potent antioxidant with high efficacy which is also involved in the chelation of metal ions, regeneration of antioxidants, and repair of oxidatively damaged proteins. In human body LA is rapidly reduced to dihydrolipoic acid (DHLA) after intake into the cell. Both, LA and DHLA are amphipathic molecules which act as antioxidants both in hydrophilic and lipophilic environments. The present study aimed to investigate the antioxidant/pro-oxidant effects of LA and DHLA due to their concentrations in metal-catalyzed protein oxidation (MCO) of human serum albumin (HSA). Progressive oxidative modification of albumin was found in MCO system by an increased content of protein hydroperoxides (POOH), protein carbonyl groups (PCO) which is the former's major breakdown product, and other protein oxidation markers such as advanced oxidized protein products (AOPP) and protein thiol groups (P-SH). The possible antioxidant protective effects of LA and DHLA were observed with 25 µM and 50 µM; DHLA being more influential. Protein oxidation parameters were found to be lower and P-SH levels seemed higher. However, prooxidant effects of both LA and DHLA came on the scene with increased concentrations of 75 µM and 100 µM where the latter seemed the most hazardous with contradicted results. It is clear that the loss of biological activity of human serum albumin by MCO system appears of medical relevance and if LA exerts similar effects seen in the present study, it is possible that cellular prooxidant activity can also result consuming this unique antioxidant in certain doses.


2021 ◽  
Vol 66 (No. 5) ◽  
pp. 179-187
Author(s):  
Yongjie Xiong ◽  
Qirun Yin ◽  
Kai Song ◽  
Jing Li ◽  
Shaojun He

Alpha lipoic acid (ALA), a natural lipophilic compound, plays an important role in regulating several metabolic pathways due to its antioxidant properties. This study aims to investigate whether ALA could be used as a feed additive to enhance the antioxidant capacity of the ovary tissue in hens exposed to heat stress (HS). One hundred and sixty 128-days-old female chickens were randomly assigned into four groups: the control group (Con), ALA treatment group (ALA), ALA and HS treatment group (ALA + HS), and HS treatment group (HS). The ALA and ALA + HS groups were fed a basal diet with 0.25% ALA, whereas the Con and HS groups were fed a basal diet only. Serum oestradiol, progesterone levels, biomarkers of antioxidant capacity, and endoplasmic reticulum (ER) stress markers were detected in the ovaries of heat-stressed chickens. HS decreased serum oestradiol and progesterone concentrations compared with the control group, whereas dietary ALA (0.25%) increased oestradiol and progesterone levels in the serum of heat-stressed hens. Malondialdehyde concentration in the ovary was higher in the HS group than that of the ALA + HS group. Compared with the HS group, ALA increased the enzymatic activities of superoxide dismutase, glutathione peroxidase, and catalase in the ovaries of ALA + HS group. Simultaneously, ALA enhanced the total antioxidative capacity of the ovaries of heat-stressed hens. Moreover, ALA also significantly inhibited the increased expression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein homologous protein, which are two markers of ER stress, and heat shock protein 70, a key biomarker of heat stress, in the ovaries of the ALA + HS group as compared to those of the HS group. This work implied that dietary ALA supplementation improved the antioxidant capacity and attenuated the HS-induced reduction of serum oestradiol and progesterone levels and modulated the oxidative and ER stress, which are involved in the protective effect of ALA in hens exposed to hyperthermia.


2010 ◽  
Vol 34 (8) ◽  
pp. S14-S14
Author(s):  
Yi Yang ◽  
Wei‑Ping Wang ◽  
Yi‑Nan Liu ◽  
Ting Guo ◽  
Ping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document