scholarly journals To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird

2013 ◽  
Vol 9 (4) ◽  
pp. 20130317 ◽  
Author(s):  
Sabrina Tartu ◽  
Aurélie Goutte ◽  
Paco Bustamante ◽  
Frédéric Angelier ◽  
Børge Moe ◽  
...  

Mercury, a ubiquitous toxic element, is known to alter expression of sex steroids and to impair reproduction across vertebrates but the mechanisms underlying these effects are not clearly identified. We examined whether contamination by mercury predicts the probability to skip reproduction in black-legged kittiwakes ( Rissa tridactyla ) from Svalbard. We also manipulated the endocrine system to investigate the mechanism underlying this relationship. During the pre-laying period, we injected exogenous GnRH (gonadotropin-releasing hormone) to test the ability of the pituitary to release luteinizing hormone (LH, a key hormone for the release of sex steroids and hence breeding) in relation to mercury burden. Birds that skipped reproduction had significantly higher mercury concentration in blood than breeders. Endocrine profiles of these birds also varied based on breeding status (breeders versus non-breeders), mercury contamination and sex. Specifically, in skippers (birds that did not breed), baseline LH decreased with increasing mercury concentration in males, whereas it increased in females. GnRH-induced LH levels increased with increasing mercury concentration in both sexes. These results suggest that mercury contamination may disrupt GnRH input to the pituitary. Thus, high mercury concentration could affect the ability of long-lived birds to modulate their reproductive effort (skipping or breeding) according to ongoing environmental changes in the Arctic, thereby impacting population dynamics.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


2012 ◽  
Vol 90 (6) ◽  
pp. 714-721 ◽  
Author(s):  
J.J. Bowden ◽  
C.M. Buddle

We studied populations of three tundra-dwelling wolf spider (Lycosidae) species to determine reproductive trait relationships and developmental timing in the Arctic. We collected 451 Pardosa lapponica (Thorell, 1872), 176 Pardosa sodalis Holm, 1970, and 117 Pardosa moesta Banks, 1892 during summer 2008. We used log-likelihood ratio tests and multiple linear regressions to determine the best predictors of fecundity and relative reproductive effort. Female body size best explained the variation in fecundity and body condition was the best predictor for relative reproductive effort. We tested for a trade-off between the allocation of resources to individual eggs and the number of eggs produced (fecundity) within each species using linear regression. There was variation in detectable egg size and number trade-offs among sites and these may be related to local variation in resource allocation linked to density-related biotic or abiotic factors. These findings contribute to knowledge about the fitness of arctic wolf spiders in the region of study and are particularly relevant in light of the effects that climate changes are predicted to have on the arctic fauna.


2020 ◽  
Vol 8 ◽  
Author(s):  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Weihan Jia ◽  
Kai Li ◽  
Luidmila Pestryakova ◽  
...  

Plant diversity in the Arctic and at high altitudes strongly depends on and rebounds to climatic and environmental variability and is nowadays tremendously impacted by recent climate warming. Therefore, past changes in plant diversity in the high Arctic and high-altitude regions are used to infer climatic and environmental changes through time and allow future predictions. Sedimentary DNA (sedDNA) is an established proxy for the detection of local plant diversity in lake sediments, but still relationships between environmental conditions and preservation of the plant sedDNA proxy are far from being fully understood. Studying modern relationships between environmental conditions and plant sedDNA will improve our understanding under which conditions sedDNA is well-preserved helping to a.) evaluate suitable localities for sedDNA approaches, b.) provide analogues for preservation conditions and c.) conduct reconstruction of plant diversity and climate change. This study investigates modern plant diversity applying a plant-specific metabarcoding approach on sedimentary DNA of surface sediment samples from 262 lake localities covering a large geographical, climatic and ecological gradient. Latitude ranges between 25°N and 73°N and longitude between 81°E and 161°E, including lowland lakes and elevated lakes up to 5168 m a.s.l. Further, our sampling localities cover a climatic gradient ranging in mean annual temperature between -15°C and +18°C and in mean annual precipitation between 36­ and 935 mm. The localities in Siberia span over a large vegetational gradient including tundra, open woodland and boreal forest. Lake localities in China include alpine meadow, shrub, forest and steppe and also cultivated areas. The assessment of plant diversity in the underlying dataset was conducted by a specific plant metabarcoding approach. We provide a large dataset of genetic plant diversity retrieved from surface sedimentary DNA from lakes in Siberia and China spanning over a large environmental gradient. Our dataset encompasses sedDNA sequence data of 259 surface lake sediments and three soil samples originating from Siberian and Chinese lakes. We used the established chloroplastidal P6 loop trnL marker for plant diversity assessment. The merged, filtered and assigned dataset includes 15,692,944 read counts resulting in 623 unique plant DNA sequence types which have a 100% match to either the EMBL or to the specific Arctic plant reference database. The underlying dataset includes a taxonomic list of identified plants and results from PCR replicates, as well as extraction blanks (BLANKs) and PCR negative controls (NTCs), which were run along with the investigated lake samples. This collection of plant metabarcoding data from modern lake sediments is still ongoing and additional data will be released in the future.


2021 ◽  
Author(s):  
Tamer Abu-Alam ◽  
Karl Magnus Nilsen ◽  
Obiajulu Odu ◽  
Leif Longva ◽  
Per Pippin Aspaas

<p>Research data plays a key role in monitoring and predicting any natural phenomena, including changes in the Polar Regions. The limited access to data restricts the ability of researchers to monitor, predict and model environmental changes and their socio-economic repercussions. In a recent survey of 113 major polar research institutions, we found out that an estimated 60% of the existing polar research data is unfindable through common search engines and can only be accessed through institutional webpages. In social science and indigenous knowledge, this findability gap is even higher, approximately 84% of the total existing data. This raises an awareness sign and the call for the need of the scientific community to collect information on the global output of research data and publications related to the Polar Regions and present it in a homogenous, seamless database.</p><p>In this contribution, we present a new, open access discovery service, Open Polar, with the purpose of rendering polar research more visible and retrievable to the research community as well as to the interested public, teachers, students and decision-makers. The new service is currently under construction and will be hosted by UiT The Arctic University of Norway in close collaboration with the Norwegian Polar Institute and other international partners. The beta version of the Open Polar was made available in February 2021. We welcome comments and suggestions from the scientific community to the beta version, while we plan to launch the stable production version of the service by summer 2021. The beta version of the service can already be tested at the URL: www.openpolar.no</p>


2021 ◽  
pp. 137-142
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘Arctic futures’ discusses the future of the Arctic that starts in the Norwegian territory of Svalbard wherein the Global Seed Vault functions as an Arctic sanctuary for the genetic diversity of crops. The Svalbard archipelago is a hotspot of Arctic amplification as rapid warming has been keenly felt by the small community. However, the environmental changes, no matter how stark and widespread, will not dampen interest in economic development and strategic posturing. Arctic states and northern peoples remain eager to improve their social and economic conditions as well as adapt to ongoing climate change. The Arctic is a haven of international peace and cooperation as the Arctic Council is cited as a governance model that others could emulate.


2020 ◽  
Vol 12 (6) ◽  
pp. 2446 ◽  
Author(s):  
Berill Blair ◽  
Amy Lovecraft

Global sustainability goals cannot realistically be achieved without strategies that build on multiscale definitions of risks to wellbeing. Particularly in geographic contexts experiencing rapid and complex social and environmental changes, there is a growing need to empower communities to realize self-identified adaptation goals that address self-identified risks. Meeting this demand requires tools that can help assess shared understandings about the needs for, and barriers to, positive change. This study explores consensus about risks and uncertainties in adjacent boroughs grappling with rapid social–ecological transformations in northern Alaska. The Northwest Arctic and North Slope boroughs, like the rest of the Arctic, are coping with a climate that is warming twice as fast as in other regions. The boroughs are predominantly inhabited by Iñupiat people, for whom the region is ancestral grounds, whose livelihoods are still supported by subsistence activities, and whose traditional tribal governance has been weakened through multiple levels of governing bodies and institutions. Drawing on extensive workshop discussions and survey experiments conducted with residents of the two boroughs, we developed a model of the northern Alaska region’s social–ecological system and its drivers of change. Using cultural consensus analysis, we gauged the extent of consensus across the boroughs about what key risks threaten the sustainability of their communities. Though both boroughs occupy vast swaths of land, each with their own resource, leadership, and management challenges, we found strong consensus around how risks that impact the sustainability of communities are evaluated and prioritized. Our results further confirmed that rapid and complex changes are creating high levels of uncertainties for community planners in both boroughs. We discuss the mobilizing potential of risk consensus toward collective adaptation action in the civic process of policy making. We note the contribution of cultural consensus analysis as a tool for cross-scale learning in areas coping with rapid environmental changes and complex social challenges.


2019 ◽  
Vol 19 (3) ◽  
pp. 2537-2545
Author(s):  
Gülseren Keskin

Background: Stress can be defined as an acute threat to the homeostasis of an organism, and in order to manage stress, and maintain stability, the allostatic systems activate an adaptive response. Stress has been shown to have both short - and long-term effects on the function of the gastrointestinal tract, but long-term exposure to stress is more likely to cause endocrine disorders.Objective: The aim of this study was to investigate the endocrine response to stress, and evaluate the relationship between somatization and gastrointestinal symptoms.Methods: A systematic literature search was conducted on several academic databases, which included, Pubmed, EBSCO and Science Direct. The search was performed using the keywords, “endocrine response to stress”, “somatization” and “gastrointestinal symptoms”. Results: The hypothalamic-pituitary-adrenal (HPA) axis is essential in controlling physiological stress responses. Dysfunction is related to several mental disorders, including anxiety and depression, or somatization. Symptoms associated with genetic, or other traumatic experiences of individuals under stress, can lead to a maladaptive response to stress. These stressful life events were found to be associated with digestive system-related chronic diseases. Gastrointestinal disorders significantly affect millions of people worldwide. Conclusion: This study examined how the endocrine system responds to stress, and the effect this has in causing stress-related gastrointestinal distresses. Our findings indicate that stress-related psychological disorders are strongly associated with the severity of gastrointestinal symptoms.Keywords: Stress, endocrine response, somatization, gastrointestinal symptoms.


2019 ◽  
Vol 11 (19) ◽  
pp. 2280 ◽  
Author(s):  
Alexander Kokhanovsky ◽  
Maxim Lamare ◽  
Olaf Danne ◽  
Carsten Brockmann ◽  
Marie Dumont ◽  
...  

The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180834 ◽  
Author(s):  
Charmain D. Hamilton ◽  
Jade Vacquié-Garcia ◽  
Kit M. Kovacs ◽  
Rolf A. Ims ◽  
Jack Kohler ◽  
...  

Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida ) and white whales (WW; Delphinapterus leucas ) from Svalbard, Norway, spanning two decades (1995–2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.


Sign in / Sign up

Export Citation Format

Share Document