scholarly journals Wing wear reduces bumblebee flight performance in a dynamic obstacle course

2016 ◽  
Vol 12 (6) ◽  
pp. 20160294 ◽  
Author(s):  
Andrew M. Mountcastle ◽  
Teressa M. Alexander ◽  
Callin M. Switzer ◽  
Stacey A. Combes

Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear.

2008 ◽  
Vol 86 (7) ◽  
pp. 668-675 ◽  
Author(s):  
C. A. Haas ◽  
R. V. Cartar

We lack a mechanism that links wing wear with mortality in foraging social insects. This study tests the hypothesis that wing wear strongly degrades foraging flight performance, thereby providing a biomechanical explanation for the wing wear – mortality relationship. We examine the effect of simulated wing wear — wing area reduction and asymmetry — on the flight behaviour of bumble bee ( Bombus flavifrons Cresson, 1863) workers moving between vertically oriented flowers spaced 30 cm apart and arranged in a two-dimensional horizontal grid. Flight behaviour was measured in three dimensions as total flying distance, mean velocity, variability of velocity, maximum acceleration, maximum deceleration, percentage of time spent accelerating, and displacement from a straight line path between flowers. Loss of wing area had surprisingly little effect on flight behaviour. Viewed multivariately, bees with low asymmetry and low loss of mean area, or with high asymmetry and high loss of mean area, differed from the other three treatment groups. When bees were burdened with both high asymmetry and high loss of wing area, their between-flower flight path was less direct. Overall, flight behaviour of bumble bees was highly resilient to major changes in wing area and asymmetry in this simple foraging environment. The wing wear-associated causes of increased mortality remain elusive.


2015 ◽  
Vol 93 (7) ◽  
pp. 531-537 ◽  
Author(s):  
Jordan C. Roberts ◽  
Ralph V. Cartar

Wing wear reflects the accumulation of irreversible damage to an insect’s wings over its lifetime and this damage should influence flight performance. In the case of bumble bees, flight seems robust to variation in wing-area asymmetry and air pressure, but not to loss of wing area. However, how the pattern of wing wear affects flight performance remains unstudied. In nature, wing wear typically occurs in a ragged and haphazard pattern along the wing’s trailing margin, a shape strikingly different from the straight cut applied in past studies. In this study, we test if shape of wing wear (implemented as four distinct treatments plus a control) affects maximum load-lifting capabilities and wingbeat frequency of worker common eastern bumble bees (Bombus impatiens Cresson, 1863). We found that shape of wing wear of 171 mg bees had no detectable effect on maximum load-lifting capability (detectable effect size = 18 mg) or on wingbeat frequency (detectable effect size = 15 Hz), but that loss of wing area reduced load-lifting capability and increased wingbeat frequency. The importance of wing area in explaining the load-lifting ability of bumble bees is reinforced in this study. But, paradoxically, shape of wing wear did not detectably affect lift generation, which is determined by unsteady aerodynamic forces in these lift-reliant insects.


Author(s):  
Frank Fan Wang

It is a challenge to correlate different dynamic loads. Often, attempts are made to compare the peak acceleration of sine wave to the root mean square (RMS) acceleration of random vibration and shock. However, peak sine acceleration is the maximum acceleration at one frequency. Random RMS is the square root of the area under a spectral density curve. These are not equivalent. This paper is to discuss a mathematical method to compare different kinds of dynamic damage at the resonant point of the related electronic equipment. The electronic equipment will vibrate at its resonance point when there are dynamic excitations. The alternative excitation at the resonant frequency causes the most damage. This paper uses this theory to develop a method to correlate different dynamic load conditions for electronic equipment. The theory is that if one kind of dynamic load causes the same levels of damaging effects as the other, the levels of vibration can then be related.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4271
Author(s):  
Hao Jie Zhu ◽  
Mao Sun

Energy expenditure is a critical characteristic in evaluating the flight performance of flying insects. To investigate how the energy cost of small-sized insects varies with flight speed, we measured the detailed wing and body kinematics in the full speed range of fruitflies and computed the aerodynamic forces and power requirements of the flies. As flight speed increases, the body angle decreases and the stroke plane angle increases; the wingbeat frequency only changes slightly; the geometrical angle of attack in the middle upstroke increases; the stroke amplitude first decreases and then increases. The mechanical power of the fruitflies at all flight speeds is dominated by aerodynamic power (inertial power is very small), and the magnitude of aerodynamic power in upstroke increases significantly at high flight speeds due to the increase of the drag and the flapping velocity of the wing. The specific power (power required for flight divided by insect weigh) changes little when the advance ratio is below about 0.45 and afterwards increases sharply. That is, the specific power varies with flight speed according to a J-shaped curve, unlike those of aircrafts, birds and large-sized insects which vary with flight speed according to a U-shaped curve.


Retos ◽  
2018 ◽  
pp. 75-79
Author(s):  
F. Javier Núñez ◽  
Francisco J. Toscano-Bendala ◽  
Luis Suarez-Arrones ◽  
F. Ignacio Martínez-Cabrera ◽  
Moisés De Hoyo

Abstract. The aim of the present study was to analyze the number and the % of maximum accelerations, and the distance covered among different soccer players’ positions, classifying them with GPS technology according to an individual threshold based on the maximum acceleration capacity. 20 players were observed during four matches (n=80). All players undertook a maximal running speed test to determine the maximal acceleration. Players’ activities during the matches were classified into four individual acceleration thresholds: acceleration starting from 0 to 13 km·h-1 and never reaching 18 km·h-1 (A1); acceleration starting from 0 to 13 km·h-1 and reaching 18 km·h-1 (A2); acceleration starting from 13 to 18 km·h-1 (A3); and acceleration starting above 18 km·h-1 (A4). During A1, Full-Backs performed a higher number of accelerations compared to other playing positions and reached a ~95% of the maximum acceleration. During A2, Full-Backs and Wide Midfielder performed a higher number of accelerations than Central Defenders and Forwards, and Central Midfielders reached an estimated intensity of 95% of the maximum acceleration. During A3, CM performed the highest number of accelerations compared to the rest of the groups, while F reached an estimated intensity of 78% of their maximum acceleration. This individualized threshold could help coaches assess players’ physical performance and improve it, or to avoid injuries.Resumen. El objetivo del presente estudio fue analizar el número, % de la aceleración máxima y la distancia recorrida por las diferentes posiciones de juego, clasificándolos según un umbral individual para cada jugador basado en la máxima capacidad de aceleraración usando la tecnología GPS. Un total de 20 jugadores fueron evaluados durante 4 partidos (n=80). Todos los participantes realizaron un sprint a la máxima velocidad de carrera para determinar su capacidad máxima de aceleración. La actividad de los jugadores durante los partidos fue dividida en 4 categorías individuales de aceleración: A1, aceleración de 0 a 13 km·h-1 y sin llegar a 18 km·h-1; A2, aceleración desde 0 hasta 13 km·h-1 y alcanzando 18 km·h-1; A3, aceleración que inicia desde los 13 km·h-1 hasta los 18 km·h-1; A4, aceleración que comienza a una velocidad >18 km·h-1. En A1, los defensas laterales realizaron un mayor número de aceleraciones en comparación con las otras demarcaciones de juego y logrando una intensidad ~ 95% de su aceleración máxima. En A2, los defensas laterales y centrocampistas laterales realizaron un mayor número de aceleraciones que los defensas centrales y delanteros, consiguiendo los centrocampistas una intensidad aproximada del 95% de su máxima aceleración. En A3, los centrocampistas realizaron una cantidad superior de aceleraciones que el resto de grupos, mientras que los delanteros lograron una intensidad aproximada del 78% de su máxima aceleración. Estos umbrales individualizados podrían ser de gran utilidad para permitir evaluar a los técnicos de forma más precisa el rendimiento físico de los jugadores, permitiéndoles con ello mejorar su rendimiento y prevenir lesiones en futbolistas.


Author(s):  
Hiroshi Isshiki

In case of MAV (Micro Air Vehicle), the generation of lift and thrust by flapping foils is very attractive, since flying insects such as dragonflies show the very high flight performance. However, in case of the flapping foil drive, the increase of load due to variation of the inertia forces takes place in contrast to the case of the rotary foil drive. So, it is extremely important to suppress the variation of the inertia forces. The possibility of canceling the inertia forces by using resonance is shown below. Furthermore, a control method to maintain the resonance is developed and verified by a numerical simulation.


2015 ◽  
Vol 61 (6) ◽  
pp. 951-958 ◽  
Author(s):  
Nicolantonio Agostini ◽  
Michele Panuccio ◽  
Cristian Pasquaretta

Abstract Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs. However during migration, these birds often have to cross water surfaces where thermal currents are weak; during these times, birds mainly use flapping (powered) flight which increases energy consumption and mortality risk. As a result, some species have evolved strategies to reduce the amount of time spent over water by taking extensive detours over land. In this paper, we conducted a meta-analysis of water-crossing tendencies in Afro-Palearctic migrating raptors in relation to their morphology, their flight performance, and their phylogenetic relationships. In particular, we considered the aspect ratio (calculated as the wing span squared divided by wing area), the energetic cost of powered flight, and the maximum water crossing length regularly performed by adult birds. Our results suggest that energy consumption during powered flight predominately affects the ability of raptors to fly over water surfaces.


Escape from high-speed aircraft has necessitated the development of ejection seats. This introduced the physiological problem of the maximum acceleration and rate of change of acceleration which can be sustained by the seated human body along the vertical axis of the spine. The ballistic behaviour of the human body has been studied by various experimental techniques. Natural frequencies and damping characteristics of the ejected system (man and seat) have been determined by subjecting the instrumented body to continuous vibrations over the frequency range from 1 to 20 c/s, and also by investigation of its response to spike- and step-force functions in sledge-hammer and seat-drop experiments. Results with different cushion and spring systems interposed between man and seat were compared and related to accelerometer records obtained from live subjects on ejection test rigs. The data derived from these experiments has been studied on an electronic servo simulator and the general physiological requirements for ejection-seat guns have been defined. Under these conditions a rate of change of acceleration of 300 g/s with a maximum peak acceleration of 25 g should be considered as limiting factors for accelerations tolerable by the body. This implies that the characteristics of the acceleration applied to the seat should be less than these figures by an amount depending on the elasticity of the cushion employed. It is suggested that the optimum duration of the thrust is approximately 0⋅23 s and a maximum overshoot in peak acceleration in the body would result with a rate of change of acceleration of 400 g/s applied to the seat.


Bat wing morphology is considered in relation to flight performance and flight behaviour to clarify the functional basis for eco-morphological correlations in flying animals. Bivariate correlations are presented between wing dimensions and body mass for a range of bat families and feeding classes, and principal-components analysis is used to measure overall size, wing size and wing shape. The principal components representing wing size and wing shape (as opposed to overall size) are interpreted as being equivalent to wing loading and to aspect ratio. Relative length and area of the hand-wing or wingtip are determined independently of wing size, and are used to derive a wingtip shape index, which measures the degree of roundedness or pointedness of the wingtip. The optimal wing form for bats adapted for different modes of flight is predicted by means of mechanical and aerodynamic models. We identify and model aspects of performance likely to influence flight adaptation significantly; these include selective pressures for economic forward flight (low energy per unit time or per unit distance (equal to cost of transport)), for flight at high or low speeds, for hovering, and for turning. "Turning performance is measured by two quantities: manoeuvrability, referring to the minimum space required for a turn at a given speed; and agility, relating to the rate at which a turn can be initiated. High flight speed correlates with high wing loading, good manoeuvrability is favoured by low wing loading, and turning agility should be associated with fast flight and with high wing loading. Other factors influencing wing adaptations, such as migration, flying with a foetus or young or carrying loads in flight (all of which favour large wing area), flight in cluttered environments (short wings) and modes of landing, are identified. The mechanical predictions are cast into a size-independent principal-components form, and are related to the morphology and the observed flight behaviour of different species and families of bats. In this way we provide a broadly based functional interpretation of the selective forces that influence wing morphology in bats. Measured flight speeds in bats permit testing of these predictions. Comparison of open-field free-flight speeds with morphology confirms that speed correlates with mass, wing loading and wingtip proportions as expected; there is no direct relation between speed and aspect ratio. Some adaptive trends in bat wing morphology are clear from this analysis. Insectivores hunt in a range of different ways, which are reflected in their morphology. Bats hawking high-flying insects have small, pointed wings which give good agility, high flight speeds and low cost of transport. Bats hunting for insects among vegetation, and perhaps gleaning, have very short and rounded wingtips, and often relatively short, broad wings, giving good manoeuvrability at low flight speeds. Many insectivorous species forage by ‘ flycatching ’ (perching while seeking prey) and have somewhat similar morphology to gleaners. Insectivorous species foraging in more open habitats usually have slightly longer wings, and hence lower cost of transport. Piscivores forage over open stretches of water, and have very long wings giving low flight power and cost of transport, and unusually long, rounded tips for control and stability in flight. Carnivores must carry heavy loads, and thus have relatively large wing areas; their foraging strategies consist of perching, hunting and gleaning, and wing structure is similar to that of insectivorous species with similar behaviour. Perching and hovering nectarivores both have a relatively small wing area: this surprising result may result from environmental pressure for a short wingspan or from the advantage of high speed during commuting flights; the large wingtips of these bats are valuable for lift generation in slow flight. The relation between flight morphology (as an indicator of flight behaviour) and echolocation is considered. It is demonstrated that adaptive trends in wing adaptations are predictably and closely paralleled by echolocation call structure, owing to the joint constraints of flying and locating food in different ways. Pressures on flight morphology depend also on size, with most aspects of performance favouring smaller animals. Power rises rapidly as mass increases; in smaller bats the available energy margin is greater than in larger species, and they may have a more generalized repertoire of flight behaviour. Trophic pressures related to feeding strategy and behaviour are also important, and may restrict the size ranges of different feeding classes: insectivores and primary nectarivores must be relatively small, carnivores and frugivores somewhat larger. The relation of these results to bat community ecology is considered, as our predictions may be tested through comparisons between comparable, sympatric species. Our mechanical predictions apply to all bats and to all kinds of bat communities, but other factors (for example echolocation) may also contribute to specialization in feeding or behaviour, and species separation may not be determined solely by wing morphology or flight behaviour. None the less, we believe that our approach, of identifying functional correlates of bat flight behaviour and identifying these with morphological adaptations, clarifies the eco-morphological relationships of bats.


Sign in / Sign up

Export Citation Format

Share Document