scholarly journals Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity

2019 ◽  
Vol 15 (2) ◽  
pp. 20180628 ◽  
Author(s):  
Neda N. Moghadam ◽  
Tarmo Ketola ◽  
Cino Pertoldi ◽  
Simon Bahrndorff ◽  
Torsten N. Kristensen

Variations in stress resistance and adaptive plastic responses during ontogeny have rarely been addressed, despite the possibility that differences between life stages can affect species' range margins and thermal tolerance. Here, we assessed the thermal sensitivity and hardening capacity of Drosophila melanogaster across developmental stages from larval to the adult stage. We observed strong differences between life stages in heat resistance, with adults being most heat resistant followed by puparia , pupae and larvae . The impact of heat hardening (1 h at 35°C) on heat resistance changed during ontogeny, with the highest positive effect of hardening observed in puparia and pupae and the lowest in adults. These results suggest that immobile life stages ( puparia and pupae ) have evolved high plasticity in upper thermal limits whereas adults and larvae rely more on behavioural responses to heat stress allowing them to escape from extreme high temperatures. While most studies on the plasticity of heat resistance in ectotherms have focused on the adult life stage, our findings emphasize the crucial importance of juvenile life stages of arthropods in understanding the thermal biology and life stage-specific physiological responses to variable and stressful high temperatures. Failure to acknowledge this complication might lead to biased estimates of species' ability to cope with environmental changes, such as climate change.

2020 ◽  
Vol 223 (22) ◽  
pp. jeb233254
Author(s):  
Adriana P. Rebolledo ◽  
Carla M. Sgrò ◽  
Keyne Monro

ABSTRACTUnderstanding thermal performance at life stages that limit persistence is necessary to predict responses to climate change, especially for ectotherms whose fitness (survival and reproduction) depends on environmental temperature. Ectotherms often undergo stage-specific changes in size, complexity and duration that are predicted to modify thermal performance. Yet performance is mostly explored for adults, while performance at earlier stages that typically limit persistence remains poorly understood. Here, we experimentally isolate thermal performance curves at fertilization, embryo development and larval development stages in an aquatic ectotherm whose early planktonic stages (gametes, embryos and larvae) govern adult abundances and dynamics. Unlike previous studies based on short-term exposures, responses with unclear links to fitness or proxies in lieu of explicit curve descriptors (thermal optima, limits and breadth), we measured performance as successful completion of each stage after exposure throughout, and at temperatures that explicitly capture curve descriptors at all stages. Formal comparisons of descriptors using a combination of generalized linear mixed modelling and parametric bootstrapping reveal important differences among life stages. Thermal performance differs significantly from fertilization to embryo development (with thermal optimum declining by ∼2°C, thermal limits shifting inwards by ∼8–10°C and thermal breadth narrowing by ∼10°C), while performance declines independently of temperature thereafter. Our comparisons show that thermal performance at one life stage can misrepresent performance at others, and point to gains in complexity during embryogenesis, rather than subsequent gains in size or duration of exposure, as a key driver of thermal sensitivity in early life.


2020 ◽  
Author(s):  
Paul McCusker ◽  
Wasim Hussain ◽  
Paul McVeigh ◽  
Erin McCammick ◽  
Nathan G. Clarke ◽  
...  

AbstractFor over a decade RNA interference (RNAi) has been an important molecular tool for functional genomics studies in parasitic flatworms. Despite this, our understanding of RNAi dynamics in many flatworm parasites, such as the temperate liver fluke (Fasciola hepatica), remains rudimentary. The ability to maintain developing juvenile fluke in vitro provides the opportunity to perform functional studies during development of the key pathogenic life stage. Here, we investigate the RNAi competence of developing juvenile liver fluke. Firstly, all life stages examined possess, and express, core candidate RNAi effectors encouraging the hypothesis that all life stages of F. hepatica are RNAi competent. RNAi effector analyses supported growing evidence that parasitic flatworms have evolved a separate clade of RNAi effectors with unknown function. Secondly, we assessed the impact of growth / development during in vitro culture on RNAi in F. hepatica juveniles and found that during the first week post-excystment liver fluke juveniles exhibit quantitatively lower RNAi mediated transcript knockdown when maintained in growth inducing media. This did not appear to occur in older in vitro juveniles, suggesting that rapidly shifting transcript dynamics over the first week following excystment alters RNAi efficacy after a single 24 hour exposure to double stranded (ds)RNA. Finally, RNAi efficiency was found to be improved through use of a repeated dsRNA exposure methodology that has facilitated silencing of genes in a range of tissues, thereby increasing the utility of RNAi as a functional genomics tool in F. hepatica.


2018 ◽  
Author(s):  
Aimee Lee S. Houde ◽  
Arash Akbarzadeh ◽  
Oliver P. Günther ◽  
Shaorong Li ◽  
David A. Patterson ◽  
...  

AbstractAn organism’s ability to respond effectively to environmental change is critical to their survival. Yet, life stage and overall condition can dictate tolerance thresholds to heightened environmental stressors, such that stress may not be equally felt across individuals within a species. Environmental changes can induce transcriptional responses in an organism, some of which reflect generalized responses, and others are highly specific to the type of change being experienced. Thus, if transcriptional biomarkers specific to a heightened environmental stressor, even under multi-stressor impacts, can be identified, the biomarkers could be then applied in natural environments to determine when and where individuals are experiencing such stressors. Here, we validate candidate gill gene expression biomarkers by experimentally challenging juvenile Chinook salmon (Oncorhynchus tshawytscha). A sophisticated experimental set-up (four trials) manipulated salinity (freshwater, brackish water, and seawater), temperature (10, 14, and 18°C), and dissolved oxygen (normoxia and hypoxia), in all 18 possible combinations, for up to six days during the pre-smolt, smolt, and de-smolt life stages. In addition, we also describe the changes in juvenile behaviour, plasma variables, gill Na+/K+- ATPase (NKA) activity, body size, body morphology, and skin pigmentation associated with salinity, temperature, dissolved oxygen, mortality, and smolt status. We statistically identified biomarkers specific to salinity and temperature treatments, as well as mortality across multiple stressors and life stages. Similar biomarkers for the dissolved oxygen treatment could not be identified in the data and we discuss our next steps using an RNA-seq study. This work demonstrates the unique power of gene expression biomarkers to identify a specific stressor even under multi-stressor conditions.


Author(s):  
Benjamin Walsh ◽  
Steven Parratt ◽  
Natasha Mannion ◽  
Rhonda Snook ◽  
Amanda Bretman ◽  
...  

The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages, are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life-history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but lose the ability to produce offspring. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening which limits a species’ ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.


2017 ◽  
Author(s):  
Brent L. Lockwood ◽  
Tarun Gupta ◽  
Rosemary Scavotto

AbstractMany terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioral thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. Average maximum temperature of the warmest month of the year predicted embryonic thermal tolerance in tropical but not temperate sites. We further report that embryos live closer to their upper thermal limits than adultso—i.e., thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting dominance of heat-tolerant alleles. Together our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages in order to better predict adaptive limits.Impact SummaryClimate change may threaten the extinction of many ectothermic species, unless populations can evolutionarily adapt to rising temperatures. Natural selection should favor individuals with higher heat tolerances in hotter environments. But recent studies have found that individuals from hot and cold places often have similar heat tolerances. This pattern may indicate that the evolution of heat tolerance is constrained. If this were true, then it would have dire consequences for species persistence under novel thermal conditions.An alternative explanation for lack of variation in heat tolerance is that mobile organisms don’t need higher heat tolerances to survive in hotter places. The majority of studies have focused on heat tolerance of the adult life stage. Yet, adults in many species are mobile organisms that can avoid extreme heat by seeking shelter in cooler microhabitats (e.g., shaded locations). In contrast, immobile life stages (e.g., insect eggs) cannot behaviorally avoid extreme heat. Thus, mobile and immobile life stages may face different thermal selection pressures that lead to disparate patterns of thermal adaptation across life stages.Here, we compared heat tolerances of fruit fly adults and eggs (Drosophila melanogaster) from populations in temperate North America and tropical locations around the globe. Consistent with previous studies, we found no differences among populations in adult heat tolerance. However, eggs from tropical flies were consistently more heat tolerant than eggs from North American flies. Further, eggs had lower heat tolerance than adults. Consequently, fly eggs in the hotter tropics may experience heat death more frequently than adult flies later in life. This may explain why patterns of divergence in heat tolerance were decoupled across life stages. These patterns indicate that thermal adaptation may be life-stage-specific and suggest that future work should characterize thermal traits across life stages to better understand the evolution of thermal limits.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Liuhao Wang ◽  
Jie Wu ◽  
Kai Li ◽  
Ben M. Sadd ◽  
Yulong Guo ◽  
...  

ABSTRACT Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis. We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.


2016 ◽  
Vol 3 (10) ◽  
pp. 160382 ◽  
Author(s):  
Marco A. Vindas ◽  
Angelico Madaro ◽  
Thomas W. K. Fraser ◽  
Erik Höglund ◽  
Rolf E. Olsen ◽  
...  

Ongoing rapid domestication of Atlantic salmon implies that individuals are subjected to evolutionarily novel stressors encountered under conditions of artificial rearing, requiring new levels and directions of flexibility in physiological and behavioural coping mechanisms. Phenotypic plasticity to environmental changes is particularly evident at early life stages. We investigated the performance of salmon, previously subjected to an unpredictable chronic stress (UCS) treatment at an early age (10 month old parr), over several months and life stages. The UCS fish showed overall higher specific growth rates compared with unstressed controls after smoltification, a particularly challenging life stage, and after seawater transfer. Furthermore, subjecting fish to acute stress at the end of the experiment, we found that UCS groups had an overall lower hypothalamic catecholaminergic and brain stem serotonergic response to stress compared with control groups. In addition, serotonergic activity was negatively correlated with final growth rates, which implies that serotonin responsive individuals have growth disadvantages. Altogether, our results may imply that a subdued monoaminergic response in stressful farming environments may be beneficial, because in such situations individuals may be able to reallocate energy from stress responses into other life processes, such as growth.


Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


Author(s):  
Charlotte Scott

Beginning with an exploration of the role of the child in the cultural imagination, Chapter 1 establishes the formative and revealing ways in which societies identify themselves in relation to how they treat their children. Focusing on Shakespeare and the early modern period, Chapter 1 sets out to determine the emotional, symbolic, and political registers through which children are depicted and discussed. Attending to the different life stages and representations of the child on stage, this chapter sets out the terms of the book’s enquiry: what role do children play in Shakespeare’s plays; how do we recognize them as such—age, status, parental dynamic—and what are the effects of their presence? This chapter focuses on how the early moderns understood the child, as a symbolic figure, a life stage, a form of obligation, a profound bond, and an image of servitude.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
L. Saponari ◽  
I. Dehnert ◽  
P. Galli ◽  
S. Montano

AbstractCorallivory causes considerable damage to coral reefs and can exacerbate other disturbances. Among coral predators, Drupella spp. are considered as delayer of coral recovery in the Republic of Maldives, although little information is available on their ecology. Thus, we aimed to assess their population structure, feeding behaviour and spatial distribution around 2 years after a coral bleaching event in 2016. Biological and environmental data were collected using belt and line intercept transects in six shallow reefs in Maldives. The snails occurred in aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2. However, their occurrence was significantly different at the reef scale with the highest densities found in locations with higher coral cover. The impact of Drupella spp. appeared to be minimal with the population suffering from the loss of coral cover. We suggest that monitoring programs collect temporal- and spatial-scale data on non-outbreaking populations or non-aggregating populations to understand the dynamics of predation related to the co-occurrence of anthropogenic and natural impacts.


Sign in / Sign up

Export Citation Format

Share Document