scholarly journals Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external–internal flow coupling

2008 ◽  
Vol 6 (36) ◽  
pp. 627-640 ◽  
Author(s):  
Charlotte Barbier ◽  
Joseph A.C. Humphrey

Fishes use a complex, multi-branched, mechanoreceptive organ called the lateral line to detect the motion of water in their immediate surroundings. This study is concerned with a subset of that organ referred to as the lateral line trunk canal (LLTC). The LLTC consists of a long tube no more than a few millimetres in diameter embedded immediately under the skin of the fish on each side of its body. In most fishes, pore-like openings are regularly distributed along the LLTC, and a minute sensor enveloped in a gelatinous cupula, referred to as a neuromast, is located between each pair of pores. Drag forces resulting from fluid motions induced inside the LLTC by pressure fluctuations in the external flow stimulate the neuromasts. This study, Part I of a two-part sequence, investigates the motion-sensing characteristics of the LLTC and how it may be used by fishes to detect wakes. To this end, an idealized geometrical/dynamical situation is examined that retains the essential problem physics. A two-level numerical model is developed that couples the vortical flow outside the LLTC to the flow stimulating the neuromasts within it. First, using a Navier–Stokes solver, we calculate the unsteady flow past an elongated rectangular prism and a fish downstream of it, with both objects moving at the same speed. By construction, the prism generates a clean, periodic vortex street in its wake. Then, also using the Navier–Stokes solver, the pressure field associated with this external flow is used to calculate the unsteady flow inside the LLTC of the fish, which creates the drag forces acting on the neuromast cupula. Although idealized, this external–internal coupled flow model allows an investigation of the filtering properties and performance characteristics of the LLTC for a range of frequencies of biological interest. The results obtained here and in Part II show that the LLTC acts as a low-pass filter, preferentially damping high-frequency pressure gradient oscillations, and hence high-frequency accelerations, associated with the external flow.

Author(s):  
Charlotte Barbier ◽  
Joseph A. C. Humphrey

Fish use sensors inside the lateral line trunk canal (LLTC) to detect the motion of water in their surroundings. The LLTC is a complex sensory organ consisting of a long tube no more than a few millimeters in diameter embedded immediately under the skin of the fish on each side of its body. In most fish, pore-like openings are regularly distributed along the LLTC, and a minute sensor enveloped in a gelatinous cupula, referred to as a neuromast, is located between each pair of pores. Drag forces resulting from fluid motions induced inside the LLTC by pressure fluctuations in the external flow stimulate the neuromasts. The present study investigates the motion-sensing characteristics of the LLTC and how it may be used by fish to track prey. A two-level numerical model is presented that couples the surrounding flow outside the LLTC to that stimulating the neuromasts within it. First the unsteady flow past a pair of simulated prey/predator fish in coasting motion is calculated using a Navier-Stokes solver. Then the pressure field associated with this external flow is used to drive the flow inside the LLTC of the predator, which creates the drag forces acting on the neuromast. The model is used to investigate the filtering properties and performance characteristics of the LLTC for a range of unsteady flows of biological interest. The results obtained suggest that the LLTC preferentially filters high frequency pressure gradient oscillations, and hence high frequency accelerations, associated with the external flow.


1993 ◽  
Vol 47 (4) ◽  
pp. 489-500 ◽  
Author(s):  
J. F. Power ◽  
M. C. Prystay

Homodyne photothermal spectrometry (HPS) is a very wide bandwidth signal recovery technique which uses many of the elements of lock-in detection at very low cost. The method uses a frequency sweep, with a high-frequency bandwidth of up to 10 MHz, to excite a linear photothermal system. The response sweep of the photothermal system is downshifted into a bandwidth of a few kilohertz by means of in-phase mixing with the excitation sweep with the use of a four-quadrant double-balanced mixer and a low-pass filter. Under conditions derived from theory, the filter output gives a good approximation to the real part of the photothermal system's frequency response, dispersed as a function of time. From a recording of this signal, the frequency and impulse response of the photothermal system are rapidly recovered at very high resolution. The method has been tested with the use of laser photopyroelectric effect spectrometry and provides an inexpensive, convenient method for the recovery of high-frequency photothermal signals.


2021 ◽  
Vol 15 ◽  
Author(s):  
Islam Halawa ◽  
Katharina Reichert ◽  
Aman S. Aberra ◽  
Martin Sommer ◽  
Angel V. Peterchev ◽  
...  

Introduction: High frequency repetitive transcranial magnetic stimulation applied to the motor cortex causes an increase in the amplitude of motor evoked potentials (MEPs) that persists after stimulation. Here, we focus on the aftereffects generated by high frequency controllable pulse TMS (cTMS) with different directions, intensities, and pulse durations.Objectives: To investigate the influence of pulse duration, direction, and amplitude in correlation to induced depolarization on the excitatory plastic aftereffects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) using bidirectional cTMS pulses.Methods: We stimulated the hand motor cortex with 5 Hz rTMS applying 1,200 bidirectional pulses with the main component durations of 80, 100, and 120 μs using a controllable pulse stimulator TMS (cTMS). Fourteen healthy subjects were investigated in nine sessions with 80% resting motor threshold (RMT) for posterior-anterior (PA) and 80 and 90% RMT anterior-posterior (AP) induced current direction. We used a model approximating neuronal membranes as a linear first order low-pass filter to estimate the strength–duration time constant and to simulate the membrane polarization produced by each waveform.Results: PA and AP 5 Hz rTMS at 80% RMT produced no significant excitation. An exploratory analysis indicated that 90% RMT AP stimulation with 100 and 120 μs pulses but not 80 μs pulses led to significant excitation. We found a positive correlation between the plastic outcome of each session and the simulated peak neural membrane depolarization for time constants >100 μs. This correlation was strongest for neural elements that are depolarized by the main phase of the AP pulse, suggesting the effects were dependent on pulse direction.Conclusions: Among the tested conditions, only 5 Hz rTMS with higher intensity and wider pulses appeared to produce excitatory aftereffects. This correlated with the greater depolarization of neural elements with time constants slower than the directly activated neural elements responsible for producing the motor output (e.g., somatic or dendritic membrane).Significance: Higher intensities and wider pulses seem to be more efficient in inducing excitation. If confirmed, this observation could lead to better results in future clinical studies performed with wider pulses.


2011 ◽  
Vol 9 (70) ◽  
pp. 1073-1083 ◽  
Author(s):  
Mohammad Shahriar Karim ◽  
Gregery T. Buzzard ◽  
David M. Umulis

Morphogens are secreted molecules that specify cell-fate organization in developing tissues. Patterns of gene expression or signalling immediately downstream of many morphogens such as the bone morphogenetic protein (BMP) decapentaplegic (Dpp) are highly reproducible and robust to perturbations. This contrasts starkly with our expectation of a noisy interpretation that would arise out of the experimentally determined low concentration (approximately picomolar) range of Dpp activity, tight receptor binding and very slow kinetic rates. To investigate mechanisms by which the intrinsic noise can be attenuated in Dpp signalling, we focus on a class of secreted proteins that bind to Dpp in the extracellular environment and play an active role in regulating Dpp/receptor interactions. We developed a stochastic model of Dpp signalling in Drosophila melanogaster and used the model to quantify the extent that stochastic fluctuations would lead to errors in spatial patterning and extended the model to investigate how a surface-associated BMP-binding protein (SBP) such as Crossveinless-2 (Cv-2) may buffer out signalling noise. In the presence of SBPs, fluctuations in the level of ligand-bound receptor can be reduced by more than twofold depending on parameter values for the intermediate transition states. Regulation of receptor–ligand interactions by SBPs may also increase the frequency of stochastic fluctuations providing a separation of timescales between high-frequency receptor equilibration and slower morphogen patterning. High-frequency noise generated by SBP regulation is easily attenuated by the intracellular network creating a system that imitates the performance of a simple low-pass filter common in audio and communication applications. Together, these data indicate that one of the benefits of receptor–ligand regulation by secreted non-receptors may be greater reliability of morphogen patterning mechanisms.


2015 ◽  
Vol 21 (8) ◽  
pp. 967-976 ◽  
Author(s):  
Nengmou Wang ◽  
Hojjat Adeli

A robust filtered sliding mode control (SMC) approach is presented for vibration control of wind-excited highrise building structures. Rather than using a Lyapunov-function based control design, an alternative way is provided to find the control force based on the equivalent control force principle to obtain the control force. A low pass filter is properly selected to remove the high-frequency components of the control force while retaining the structural stability. The performance of the proposed filtered SMC is evaluated by application to a wind-excited 76-story building benchmark problem equipped with an active tuned mass damper (ATMD) on the roof. Due to the elimination of high-frequency part of the control force, the structure, sensors, actuators, and dampers are all less excited, and consequently their response is reduced compared with the unfiltered SMC approach. In addition, the required control forces are reduced which means a reduction in the size of actuators, thus making their implementation more practical. It is shown the proposed method is more robust to structural stiffness uncertainties compared with the linear quadratic Gaussian (LQG) algorithm and another implementation of SMC.


2011 ◽  
Vol 462-463 ◽  
pp. 124-129
Author(s):  
Shahrum Abdullah ◽  
Edisah Putra Teuku ◽  
Zaki Nuawi Mohd. ◽  
Mohd. Nopiah Zulkifli

This paper presents a comparison work between the filtering methods of fatigue strain loadings using the frequency spectrum and the wavelet transform (WT), in which a raw loading signal can be simplified for purpose of simulation. For this reason, the Fast Fourier Transform (FFT) and the Morlet wavelet algorithms were used in order to transform the vibrational fatigue time series into the frequency domain signal, leading to the observation of the frequency characteristics of the signal. To retain high amplitude cycles in the FFT algorithm, a low pass filter technique was applied to remove the high frequency signals with small amplitude that are non-damaging. The departure of high frequency information smoothed the low amplitude cycles at high frequency events in the fatigue signal. The Butterworth filter was selected as the most efficient filter design as it retained most of the fatigue damage and also had the capability to remove 30 % of the original low amplitude cycles. On the other hand, the Morlet wavelet managed to remove 64 % of the original 59 second signal. This wavelet filtering method removed 34 % more than the similar procedure applied through the FFT approach. Hence, this fatigue data summarising algorithm can be used for studying the durability characteristics of automotive components.


Author(s):  
Nikolay O. Kozhevnikov ◽  

The paper discusses the possibility of using a closed horizontal loop in a TEM measuring system to reduce the external high–frequency electromagnetic noise induced in a receiving loop. It is shown that the effect of an additional loop on the frequency response of the TEM measuring system is similar to that of a low–pass filter. In order to effectively reduce external noise, one should locate the auxiliary loop as close as possible to the receiver one.


2013 ◽  
Vol 427-429 ◽  
pp. 2033-2036
Author(s):  
Di Fan ◽  
Yan Gao ◽  
Yue Zhao

As the key junction between the ground and underground, hoisting systems as well as mines themselves are of vital importance to coalmine production. Laser ranging method is studied as a new solution of getting the real-time position directly. Furthermore, multi-scale phase based laser ranging principles are utilized in the system. The paper is aimed to conduct research into the problems existing in standard signal generating while using laser to locating the hoisting container, and to design standard sine generator circuits with DDS technology and DDS devices AD9850 to generate multiple frequency standard signals. In view of the serious noise disturbance in high frequency output, 4-order Chebyshev low-pass filter is designed, by using the integrated analog filters LT 6600-15, to filter the sine signals from AD9850 and to effectively weaken the noise disturbance. The established practical circuits are tested, obtaining trillion level high frequency and low frequency sine signals and fulfilling the requirements for the location system of hoisting containers.


2016 ◽  
Vol 12 (4) ◽  
pp. 1061-1077 ◽  
Author(s):  
Rachael H. Rhodes ◽  
Xavier Faïn ◽  
Edward J. Brook ◽  
Joseph R. McConnell ◽  
Olivia J. Maselli ◽  
...  

Abstract. Advances in trace gas analysis allow localised, non-atmospheric features to be resolved in ice cores, superimposed on the coherent atmospheric signal. These high-frequency signals could not have survived the low-pass filter effect that gas diffusion in the firn exerts on the atmospheric history and therefore do not result from changes in the atmospheric composition at the ice sheet surface. Using continuous methane (CH4) records obtained from five polar ice cores, we characterise these non-atmospheric signals and explore their origin. Isolated samples, enriched in CH4 in the Tunu13 (Greenland) record are linked to the presence of melt layers. Melting can enrich the methane concentration due to a solubility effect, but we find that an additional in situ process is required to generate the full magnitude of these anomalies. Furthermore, in all the ice cores studied there is evidence of reproducible, decimetre-scale CH4 variability. Through a series of tests, we demonstrate that this is an artifact of layered bubble trapping in a heterogeneous-density firn column; we use the term “trapping signal” for this phenomenon. The peak-to-peak amplitude of the trapping signal is typically 5 ppb, but may exceed 40 ppb. Signal magnitude increases with atmospheric CH4 growth rate and seasonal density contrast, and decreases with accumulation rate. Significant annual periodicity is present in the CH4 variability of two Greenland ice cores, suggesting that layered gas trapping at these sites is controlled by regular, seasonal variations in the physical properties of the firn. Future analytical campaigns should anticipate high-frequency artifacts at high-melt ice core sites or during time periods with high atmospheric CH4 growth rate in order to avoid misinterpretation of such features as past changes in atmospheric composition.


Sign in / Sign up

Export Citation Format

Share Document