scholarly journals Inflammation in intervertebral disc degeneration and regeneration

2015 ◽  
Vol 12 (104) ◽  
pp. 20141191 ◽  
Author(s):  
Maria Molinos ◽  
Catarina R. Almeida ◽  
Joana Caldeira ◽  
Carla Cunha ◽  
Raquel M. Gonçalves ◽  
...  

Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kaiqiang Sun ◽  
Jian Zhu ◽  
Chen Yan ◽  
Fudong Li ◽  
Fanqi Kong ◽  
...  

Chronic low back pain (CLBP) has been proved to be the dominating cause of disability in patients with lumbar degenerative diseases. Of the various etiological factors, intervertebral disc degeneration (IVDD) has been the dominating cause. In the past few decades, the role and changes of nerve systems, especially the peripheral sensory fibers and their neurotransmitters, in the induction and progression of IVDD have attracted growing concerns. The expression of many neuropeptides, such as SP, NPY, and CGRP, in the nociceptive pathways is increased during the progression of IVDD and responsible for the discogenic pain. Here, the role of CGRP in the progression of IVDD was firstly investigated both in vitro and in vivo. Firstly, we confirmed that human degenerated intervertebral disc tissue exhibited elevated expression of CGRP and its receptor. Secondly, in vitro experiments suggested that CGRP could inhibit the proliferation and induce apoptosis in human nucleus pulposus (NP) cells, as well as promote inflammation and degenerated phenotypes through activating NF-κB and MAPK signaling pathways. Thirdly, CGRP receptor antagonist, Rimegepant, can ameliorate the adverse effects of CGRP imposed on NP cells, which were confirmed in vitro and in vivo. Our results will bring about a brand-new insight into the roles of neuromodulation in IVDD and related therapeutic attempts.


2021 ◽  
Vol 29 ◽  
pp. 19-29
Author(s):  
Tongde Wu ◽  
Xinhua Li ◽  
Xuebing Jia ◽  
Ziqi Zhu ◽  
Jiawei Lu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Feng Wang ◽  
Li-ping Nan ◽  
Shi-feng Zhou ◽  
Yang Liu ◽  
Ze-yu Wang ◽  
...  

Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83±227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.


2021 ◽  
Vol 30 ◽  
pp. 096368972110453
Author(s):  
Wen-Cheng Lo ◽  
Chi-Sheng Chiou ◽  
Feng-Chou Tsai ◽  
Chun-Hao Chan ◽  
Samantha Mao ◽  
...  

Apart from aging process, adult intervertebral disc (IVD) undergoes various degenerative processes. However, the nicotine has not been well identified as a contributing etiology. According to a few studies, nicotine ingestion through smoking, air or clothing may significantly accumulate in active as well as passive smokers. Since nicotine has been demonstrated to adversely impact various physiological processes, such as sympathetic nervous system, leading to impaired vasculature and cellular apoptosis, we aimed to investigate whether nicotine could induce IVD degeneration. In particular, we evaluated dose-dependent impact of nicotine in vitro to simulate its chronic accumulation, which was later treated by platelet-derived biomaterials (PDB). Further, during in vivo studies, mice were subcutaneously administered with nicotine to examine IVD-associated pathologic changes. The results revealed that nicotine could significantly reduce chondrocytes and chondrogenic indicators (Sox, Col II and aggrecan). Mice with nicotine treatment also exhibited malformed IVD structure with decreased Col II as well as proteoglycans, which was significantly increased after PDB administration for 4 weeks. Mechanistically, PDB significantly restored the levels of IGF-1 signaling proteins, particularly pIGF-1 R, pAKT, and IRS-1, modulating ECM synthesis by chondrocytes. Conclusively, the PDB impart reparative and tissue regenerative processes by inhibiting nicotine-initiated IVD degeneration, through regulating IGF-1/AKT/IRS-1 signaling axis.


Author(s):  
Ian Dworkin ◽  
Daniel A. Fung ◽  
Timothy T. Davis

Low back pain is one of the most debilitating conditions worldwide, and a major cause is degenerative disc disease. Current therapies range from conservative treatments, such as medications, physical therapy, and other modalities, to more invasive treatments such as injections and surgery; however, these therapies neither stop the progression of degeneration nor restore function to the degenerating disc; they focus on symptom management, not on etiology. A novel approach to treating degenerative disc disease involves using regenerative therapies such as stem cells, growth factors, and gene therapy. The goal of these therapies is not just to decrease symptoms, but to reverse disc degeneration, while simultaneously enhancing current treatment modalities. Though clinical translation of regenerative therapies is in its infancy, in vitro and in vivo investigations have revealed these therapies’ potential in treating degenerative disc disease as well as a multitude of other musculoskeletal conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Grace E. Mosley ◽  
Minghui Wang ◽  
Philip Nasser ◽  
Alon Lai ◽  
Daniel A. Charen ◽  
...  

Abstract Back pain is linked to intervertebral disc (IVD) degeneration, but clinical studies show the relationship is complex. This study assessed whether males and females have distinct relationships between IVD degeneration and pain using an in vivo rat model. Forty-eight male and female Sprague–Dawley rats had lumbar IVD puncture or sham surgery. Six weeks after surgery, IVDs were evaluated by radiologic IVD height, histological grading, and biomechanical testing. Pain was assessed by von Frey assay and dorsal root ganglia (DRG) expression of Calca and Tac1 genes. Network analysis visualized which measures of IVD degeneration most related to pain by sex. In both females and males, annular puncture induced structural IVD degeneration, but functional biomechanical properties were similar to sham. Females and males had distinct differences in mechanical allodynia and DRG gene expression, even though sex differences in IVD measurements were limited. Network analysis also differed by sex, with more associations between annular puncture injury and pain in the male network. Sex differences exist in the interactions between IVD degeneration and pain. Limited correlation between measures of pain and IVD degeneration highlights the need to evaluate pain or nociception in IVD degeneration models to better understand nervous system involvement in discogenic pain.


2020 ◽  
Author(s):  
Qiling Yuan ◽  
Xinyi Wang ◽  
Liang Liu ◽  
Yongsong Cai ◽  
Xiaoming Zhao ◽  
...  

Abstract Background Exosomes derived from mesenchymal stem cells (MSCs) have emerged as novel drug and gene delivery tools. Current study aimed to elucidate the potential therapeutic role of human placental MSC (hPLMSC)-derived exosomes carrying antagomiR-4450 (EXO-antagomiR-4450) in intervertebral disc degeneration (IDD) progression. Methods Initially, the differentially expressed miRNAs related to IDD were identified by microarray analysis which provided data predicting the interaction between miR-4450 and ZNF121 in IDD. Next, miR-4450 and ZNF121 were elevated or silenced to determine their effects on the damage of NPCs treated with TNF-α. The therapeutic effects of EXO-antagomiR-4450 on nucleus pulposus cells (NPCs) were verified both in vitro and in vivo, especially gait analysis and fluorescent molecular tomopraphy were used in live IDD mice. Results Our results revealed that miR-4450 was highly expressed, while ZNF121 was poorly expressed in IDD patients and NPCs treated with TNF-α. Furthermore, miR-4450 was identified to specifically target ZNF121. Additionally, the inhibition of miR-4450 exerted an alleviatory effect on the inflammation, apoptosis and damage of the NPCs by up-regulating ZNF121. Moreover, EXO-antagomiR-4450 retarded damage of NPCs in vitro, alleviated IDD damage and ameliorated gait abnormality in vivo. Conclusion hPLMSC-derived exosomes could be a feasible nanovehicle to deliver inhibitory oligonucleotides like antagomiR-4450 in IDD.


Spine ◽  
2011 ◽  
Vol 36 (10) ◽  
pp. E623-E628 ◽  
Author(s):  
Gwendolyn Sowa ◽  
Edward Westrick ◽  
Corey Pacek ◽  
Paulo Coelho ◽  
Devin Patel ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yazhou Lin ◽  
Guoqing Tang ◽  
Yucheng Jiao ◽  
Ye Yuan ◽  
Yuehuan Zheng ◽  
...  

Accumulating evidence suggests that Propionibacterium acnes (P. acnes) is a novel pathogenic factor promoting intervertebral disc degeneration (IVDD). However, the underlying mechanisms by which P. acnes induces IVDD have been unclear. In this study, we quantified the severity of IVDD, as well as the expressions of inducible nitric oxide synthase (iNOS)/nitric oxide (NO) and cyclooxygenase (COX-2)/prostaglandin (PGE2) in human intervertebral discs (IVDs) infected with P. acnes. Compared with P. acnes-negative IVDs, P. acnes-positive IVDs showed increased iNOS/NO and COX-2/PGE2 activity concomitant with more severe IVDD. In order to detect the potential correlation between iNOS/NO expression, COX-2/PGE2 expression, and IVDD, we developed a P. acnes-induced IVDD rat model and found that the upregulation of iNOS/NO and COX-2/PGE2 was essential to the occurrence of P. acnes-induced IVDD. This finding was supported by the fact that the inhibition of iNOS/NO and COX-2/PGE2 activity ameliorated IVDD significantly, as evidenced by restored aggrecan and collagen II expression both in vivo and in vitro. Mechanistically, we found that P. acnes induced iNOS/NO and COX-2/PGE2 expressions via a reactive oxygen species- (ROS-) dependent NF-κB cascade. Furthermore, NADPH oxidase participated in P. acnes-induced ROS, iNOS/NO, and COX-2/PGE2 expressions. Overall, these findings further validated the involvement of P. acnes in the pathology of IVDD and provided evidence that P. acnes-induced iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway is likely responsible for the pathology of IVDD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Weikun Liu ◽  
Yanfu Wang

Abstract Background Intervertebral disc degeneration is a complex disease with high prevalence. It suggests that cell death, senescence, and extracellular matrix degradation are involved in the pathogenesis. Alpha-1 antitrypsin (AAT), a serine protease inhibitor, was previously correlated with inflammation-related diseases. However, its function on intervertebral disc degeneration remains unclear. Methods A latex-enhanced immunoturbidimetric assay measured the serum level of AAT. Real-time polymerase chain reaction (RT-qPCR) and western blot were used to testify the expression of RNA and proteins related to cell apoptosis and the Wnt/β-catenin pathway. The animal model for intervertebral disc degeneration was built by disc puncture. The degeneration grades were analyzed by safranin o staining. Results We showed that alpha-1 antitrypsin could ameliorate intervertebral disc degeneration in vitro and in vivo. We also found that the serum alpha-1 antitrypsin level in Intervertebral disc degeneration patients is negative related to the severity of intervertebral disc degeneration. Moreover, alpha-1 antitrypsin was also showed to suppress tumor necrosis factor-alpha (TNF-α) induced WNT/β-catenin signaling pathway activation in human nucleus pulposus cells. Conclusions Our study provides evidence for AAT to serve as a potential therapeutic reagent for the treatment of intervertebral disc degeneration.


Sign in / Sign up

Export Citation Format

Share Document