scholarly journals In vivo impact testing on a lengthened femur with external fixation: a future option for the non-invasive monitoring of fracture healing?

2018 ◽  
Vol 15 (142) ◽  
pp. 20180068 ◽  
Author(s):  
Lorenza Mattei ◽  
Francesca Di Puccio ◽  
Stefano Marchetti

Non-invasive methods for assessing fracture healing are crucial for biomedical engineers. An approach based on mechanical vibrations was tried out in the 1990s, but was soon abandoned due to insufficiently advanced technologies. The same approach is re-proposed in the present study in order to monitor the healing process of a lengthened femur with an external fixator. The pins screwed into the bone were exploited for the impact testing (IT) to excite the bone and capture its response. Transmission through the soft tissues was thus prevented, and the quality of the signals was improved. Impact tests were performed every three to four weeks for five months. Unfortunately, after seven weeks, some pins were removed due to infection, and thus, the system was modified. Two different configurations were considered: before and after pin removal. An additional configuration was examined in the last two sessions, when the fixator body was removed, while four pins were left in the femur. The evolution of the frequency response function and of the resonant frequencies of the system were analysed for the duration of the monitoring period. The IT results were compared to the indications provided by X-ray images. During the evolution of the callus from the soft phase to the woven bone, the resonant frequencies of the system were found to increase by approximately 2–3% per week. The largest increase (approx. 22%) was observed for the first resonant frequency. After formation of the woven bone, the vibratory response remained almost the same, suggesting that the healing assessment could be related to the relative variation in the resonant frequencies. The results presented support the application of the IT approach for fracture healing assessment.

2017 ◽  
Vol 09 (07) ◽  
pp. 1750098 ◽  
Author(s):  
Francesca Di Puccio ◽  
Lorenza Mattei ◽  
Antonia Longo ◽  
Stefano Marchetti

In clinical practice, bone healing is monitored with X-rays and manipulation. Its assessment is thus subjective, depending on the skills of the operator. Alternative and quantitative approaches have been proposed, generally based on the estimation of bone stiffness, which is known to increase with the healing process. The present study investigates the application of experimental modal analysis to fracture healing assessment focusing on fractures treated with an external fixator. The aim is to ascertain the capability of this approach to detect changes in the bone-callus stiffness as variations in the resonant frequencies despite the presence of the fixator, which might hide the bone response. In vitro tests were performed on a tibia phantom where the healing process was simulated creating three different types of callus surrogates, using glue and resin. The resonant frequencies of the phantom with screwed pins and of the phantom with the complete fixator were estimated. Results confirm an increase in the frequencies as the simulated bone-callus stiffness increases, encouraging the application of experimental modal analysis to fracture healing monitoring. This approach can offer remarkable advantages with respect to the actual standards: being non-invasive and quantitative, it would allow a more frequent healing monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 857 ◽  
Author(s):  
Wing Chiu ◽  
Benjamin Vien ◽  
Matthias Russ ◽  
Mark Fitzgerald

The lack of a quantitative method to adequately assess fractured bone healing that has undergone fixation limits prognostic capabilities on patients’ optimal return to work. This paper addresses the use of vibrational analysis to monitor the state of healing of a plate-screw fixated femur and supplement the current clinical radiographic assessment. This experimental study involves an osteotomised composite femur specimen enclosed by modelling clay to simulate the damping effect of overlying soft tissues. Epoxy adhesives are applied to the fractured region and to simulate the healing process. With the instrumentation described, the cross-spectrum and coherence are obtained and analysed in the frequency domain over a period of time. The results suggest that it is crucial to analyse the cross-spectrum and proposed healing index to quantitatively assess the stages of healing. The results also show that the mass loading effect due to modelling clay did not influence the proposed healing assessment technique. The findings indicate a potential non-intrusive technique to evaluate the healing of fractured femur by utilising the vibrational responses.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 691
Author(s):  
Jan Barcik ◽  
Devakara R. Epari

The impact of the local mechanical environment in the fracture gap on the bone healing process has been extensively investigated. Whilst it is widely accepted that mechanical stimulation is integral to callus formation and secondary bone healing, treatment strategies that aim to harness that potential are rare. In fact, the current clinical practice with an initially partial or non-weight-bearing approach appears to contradict the findings from animal experiments that early mechanical stimulation is critical. Therefore, we posed the question as to whether optimizing the mechanical environment over the course of healing can deliver a clinically significant reduction in fracture healing time. In reviewing the evidence from pre-clinical studies that investigate the influence of mechanics on bone healing, we formulate a hypothesis for the stimulation protocol which has the potential to shorten healing time. The protocol involves confining stimulation predominantly to the proliferative phase of healing and including adequate rest periods between applications of stimulation.


2021 ◽  
Vol 10 (16) ◽  
pp. 3554
Author(s):  
Dionysios J. Papachristou ◽  
Stavros Georgopoulos ◽  
Peter V. Giannoudis ◽  
Elias Panagiotopoulos

Fracture-healing is a complex multi-stage process that usually progresses flawlessly, resulting in restoration of bone architecture and function. Regrettably, however, a considerable number of fractures fail to heal, resulting in delayed unions or non-unions. This may significantly impact several aspects of a patient’s life. Not surprisingly, in the past few years, a substantial amount of research and number of clinical studies have been designed, aiming at shedding light into the cellular and molecular mechanisms that regulate fracture-healing. Herein, we present the current knowledge on the pathobiology of the fracture-healing process. In addition, the role of skeletal cells and the impact of marrow adipose tissue on bone repair is discussed. Unveiling the pathogenetic mechanisms that govern the fracture-healing process may lead to the development of novel, smarter, and more effective therapeutic strategies for the treatment of fractures, especially of those with large bone defects.


2020 ◽  
Vol 2 (11(80)) ◽  
pp. 4-7
Author(s):  
R. Madzharova ◽  
E. Simeonov

Purpose: Capsulitis adhesive is a degenerative disease of soft tissues around the shoulder joint. Characterized by pain and limited movements in the shoulder joint. It has always been considered important because of the impact on the quality-of-life and long period of illness. Therefore, the use of noninvasive and safe techniques that can speed up the healing process of the disease is important. The aim of the follow-up the effect on pain and range of motion (ROM) after conventional physiotherapy versus radial shockwave therapy (RSWT) in the same patients with Capsulitis adhesive. Method: 10 patients ware treated for 2 months with a conventional physiotherapy without improvement and followed 6 weeks treatment with RSWT. Visual analogy scale (VAS) used for pain assessment, goniometry for the ROM and Neer test, Upper limb Activity of daily living (ADL) to objectitize the patient state before and after both therapies. Results: The patient's condition has not improved after conventional therapy. The treatment with RSWT provides a significant reduction of pain, increase ROM in the shoulder joint and improve ADL for the upper limb. Conclusions: Usage of RSWT alone is much better option compared to the conventional physiotherapy in patients with Capsulitis adhesive.


2019 ◽  
Vol 47 (10) ◽  
pp. 5155-5173
Author(s):  
Zhijun Pan ◽  
Jingxin Pan ◽  
Hanli Wang ◽  
Zhou Yu ◽  
Zhong Li ◽  
...  

Objective An experimental model of severe soft tissue damage was designed to simulate high-energy fracture and observe the fracture healing process following early surgery and surgery delayed by 1 week. Methods Forty dogs were randomized to Group A (immediate surgery) and B (delayed surgery). The femur was broken, and the two ends were forcefully stabbed to damage the surrounding soft tissues. The fracture was repaired using a custom six-hole steel plate. Four dogs were killed on day 3 and weeks 1, 2, 4, and 8 following bone fracture. Soft tissue and bone were examined by light and electron microscopy. Results In Group A, no callus was present at 1, 2, 4, and 8 weeks following fracture, resulting in atrophic nonunion. In Group B, visible weak external callus was present 1 week following fracture, and good external callus growth was present at 2, 4, and 8 weeks, leading to callus healing. Conclusion These findings suggest that the first week is critical for fracture healing. Absence of callus in the early stage is indicative of absence of callus growth throughout the entire healing process, while the presence of callus in the early stage is indicative of vigorous callus growth thereafter.


2020 ◽  
Vol 87 (7-8) ◽  
pp. 58-62
Author(s):  
О. V. Lihonenko ◽  
О. V. Storozhenko ◽  
А. B. Zubakha ◽  
І. А. Shumeiko ◽  
І. О. Chorna

Objective. To study the impact of estrogens and liposomes on course of healing process in purulent wounds of soft tissues in experiment. Маterials and methods. Еxperimental investigation was done on 21 sheep. In the laboratory animals purulent-inflammatory process was simulated. Тhe laboratory animals were distributed into two groups: a control - 6 sheep and investigated - 15. All the animals obtained conventional therapy. In laboratory animals of the investigated group estrogens and liposomes were added to complex of the conventional treatment measures. The healing process course was controlled, using cytological, biochemical, planimetric and mathematic-statistical methods of investigation. Results. Application of combined estrogen-liposomal therapy in complex treatment of experimental purulent wound of soft tissues have enhanced the levels of оxyprolene, ribonucleic and deoxyribonucleic acids in the wound area, raised a value of estradiol/testosteronic index, accelerated the wound cleansing, the granulations creation and shortened the wound healing process by (2.12 ± 0.24) days. Conclusion. Including of estrogens and liposomes into the treatment complex for experimental purulent wound of soft tissues enhances cellular biosynthetic activity, activity of reparative processes in the wound area, accelerates the wound cleansing and the granulation creation, shortens the wound healing process and may be applied for improvement of the purulent wounds treatment in elderly and senile patients.


2020 ◽  
Vol 3 ◽  
Author(s):  
Adam Knoximprs ◽  
Anthony McGuire ◽  
Christopher Collier ◽  
Melissa Kacena ◽  
Roman Natoli

Background/Objective: Long bone fractures are of the most common and costly medical traumas humans experience.  Adequate characterization of the fracture healing process and development of potential medical interventions generally involves fracture induction operations on animal models of varying treatment or genetic groups, then analyzing relative repair success via synthesis of diverse assessment methodologies.  This review discusses the procedures, relevant parameters, special considerations, and key correlations of these major methodologies of fracture repair quantification.  Methods: A literature review was conducted for articles discussing the procedures or identifying correlations between each of the major fracture healing assessment methodologies.    Results: These methodologies include biomechanical testing, which provides the most direct quantification of skeletal functionality; micro-computed tomography, which enables high resolution visualization of fracture callus architecture; histology which helps elucidate the intricate processes underlying fracture repair; and x-ray which offers a non-invasive and clinically relevant view of fracture repair progress.  Each of these methodologies measure parameters directly correlating to restored functionality of fractured bone.  Conclusion: When appropriately integrated, synthesis of relevant parameters from each methodology of fracture repair assessment enables a comprehensive understanding of varying fracture healing outcomes and associated causalities.  Scientific/Clinical Policy Impact and Implications: This review may guide the interpretation and planning of fracture healing studies utilizing murine models. 


1998 ◽  
Vol 11 (02) ◽  
pp. 105-111 ◽  
Author(s):  
F. García ◽  
J. Camón ◽  
M. C. Manzanares ◽  
J. Franch

SummaryThe aspect of calcified tissues involved in fracture healing was studied by means of backscattered electron imaging. Bilateral transverse midshaft osteotomies were performed in the tibiae of 16 dogs. The osteotomies were reduced by means of a type II external skeletal fixator, and the clinical and radiographic course was assessed weekly until the moment of euthanasia, one, two, four and eight weeks after the operations. The osteotomized areas were removed and their structure examined in the scanning electron microscope, using backscattered electron images, to determine the general aspect of the extracellular matrix of the calcified tissues present. Four different tissues were observed: lamellar bone, woven bone, calcified cartilage and chondroid tissue. The backscattered electron contrast and fibre arrangement of the matrix, as well as the size and shape of the cellular lacunae, allow identification of the tissue. Chondroid tissue, which seems to have a leading role in the early phases of fracture healing, shows a characteristic pattern of a highly calcified and fibrous matrix with a large number of irregular and confluent cell lacunae.The morphological characteristics of the calcified tissues involved in fracture healing were studied by means of backscattered electron imaging. Lamellar bone, woven bone, calcified cartilage and chondroid tissue were the four calcified tissues observed during the healing process of canine midshaft tibial experimental fractures.


Sign in / Sign up

Export Citation Format

Share Document