scholarly journals Ecomorphological diversification of squamates in the Cretaceous

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Jorge A. Herrera-Flores ◽  
Thomas L. Stubbs ◽  
Michael J. Benton

Squamates (lizards and snakes) are highly successful modern vertebrates, with over 10 000 species. Squamates have a long history, dating back to at least 240 million years ago (Ma), and showing increasing species richness in the Late Cretaceous (84 Ma) and Early Palaeogene (66–55 Ma). We confirm that the major expansion of dietary functional morphology happened before these diversifications, in the mid-Cretaceous, 110–90 Ma. Until that time, squamates had relatively uniform tooth types, which then diversified substantially and ecomorphospace expanded to modern levels. This coincides with the Cretaceous Terrestrial Revolution, when angiosperms began to take over terrestrial ecosystems, providing new roles for plant-eating and pollinating insects, which were, in turn, new sources of food for herbivorous and insectivorous squamates. There was also an early Late Cretaceous (95–90 Ma) rise in jaw size disparity, driven by the diversification of marine squamates, particularly early mosasaurs. These events established modern levels of squamate feeding ecomorphology before the major steps in species diversification, confirming decoupling of diversity and disparity. In fact, squamate feeding ecomorphospace had been partially explored in the Late Jurassic and Early Cretaceous, and jaw innovation in Late Cretaceous squamates involved expansions at the extremes of morphospace.

2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


1982 ◽  
Vol 8 ◽  
pp. 45-49
Author(s):  
Jens Morgen Hansen ◽  
Arne Buch

The Early Cretaceous sea primarily covered the same basinal regions as the Late Jurassic sea but, late in the Early Cretaceous the sea also covered Late Jurassic land masses. During Early Cretaceous time the topography of the North Sea region became gradually buried. The following major transgression comprises the transition Early/Late Cretaceous. At the Jurassic/ Cretaceous transition, the Late Cimmerian unconformity is a significant feature (fig. 24), known from large parts of the North Sea region. The subsequent transgression and sedimentation of marine clay (the Valhall Formation), and marine sand (the LC-1 Unit), started late in Late Jurassic. Therefore, the formations described in the present chapter also comprise sediments of Late Jurassic age. Thicknesses of the Lower Cretaceous sediments are given in fig. 15.


2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.


2019 ◽  
Vol 6 (8) ◽  
pp. 191057 ◽  
Author(s):  
Philip D. Mannion ◽  
Paul Upchurch ◽  
Xingsheng Jin ◽  
Wenjie Zheng

Titanosaurs were a globally distributed clade of Cretaceous sauropods. Historically regarded as a primarily Gondwanan radiation, there is a growing number of Eurasian taxa, with several putative titanosaurs contemporaneous with, or even pre-dating, the oldest known Southern Hemisphere remains. The early Late Cretaceous Jinhua Formation, in Zhejiang Province, China, has yielded two putative titanosaurs, Jiangshanosaurus lixianensis and Dongyangosaurus sinensis . Here, we provide a detailed re-description and diagnosis of Jiangshanosaurus , as well as new anatomical information on Dongyangosaurus . Previously, a ‘derived’ titanosaurian placement for Jiangshanosaurus was primarily based on the presence of procoelous anterior caudal centra. We show that this taxon had amphicoelous anterior-middle caudal centra. Its only titanosaurian synapomorphy is that the dorsal margins of the scapula and coracoid are approximately level with one another. Dongyangosaurus can clearly be differentiated from Jiangshanosaurus , and displays features that indicate a closer relationship to the titanosaur radiation. Revised scores for both taxa are incorporated into an expanded phylogenetic data matrix, comprising 124 taxa scored for 548 characters. Under equal weights parsimony, Jiangshanosaurus is recovered as a member of the non-titanosaurian East Asian somphospondylan clade Euhelopodidae, and Dongyangosaurus lies just outside of Titanosauria. However, when extended implied weighting is applied, both taxa are placed within Titanosauria. Most other ‘middle’ Cretaceous East Asian sauropods are probably non-titanosaurian somphospondylans, but at least Xianshanosaurus appears to belong to the titanosaur radiation. Our analyses also recover the Early Cretaceous European sauropod Normanniasaurus genceyi as a ‘derived’ titanosaur, clustering with Gondwanan taxa. These results provide further support for a widespread diversification of titanosaurs by at least the Early Cretaceous.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1765 ◽  
Author(s):  
Jiandong Huang ◽  
Xia Wang ◽  
Yuanchao Hu ◽  
Jia Liu ◽  
Jennifer A. Peteya ◽  
...  

Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds) and that clade, are still comparatively rare. Here, we report a new ornithurine speciesChangzuiornis ahgmifrom the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum inChangzuiornis ahgmiis made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, that this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions ofChangzuiornissuggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.


Author(s):  
Jon Tennant ◽  
Philip D. Mannion

Atoposaurid crocodylomorphs represent an important faunal component of Late Jurassic to Early Cretaceous Laurasian semi-aquatic to terrestrial ecosystems. Despite being consistently recovered at the base of Neosuchia, the major crocodylomorph lineage leading to extant crocodilians, their species-level taxonomy and inter-relationships remain poorly understood. We present a systematic taxonomic review of the group, noting numerous anatomical differences between specimens from geographically discrete localities in the Late Jurassic of western Europe. In particular, we recognise a new species of Alligatorellus from Germany, previously referred to the contemporaneous French taxon Alligatorellus beaumonti, and synonymise the sympatric Alligatorium paintenense with Alligatorium franconicum. A comprehensive species-level phylogenetic analysis of unambiguous atoposaurids (15 OTUs and 450 characters) recovers a clade comprising Alligatorellus, Alligatorium, Atoposaurus, and Montsecosuchus.Theriosuchus is shown to represent a monophyletic, diverse, and long-lived genus that forms the sister taxon to this clade of atoposaurids. The poorly known Theriosuchus grandinaris, from the Early Cretaceous of Thailand, is excluded from this grouping and is instead positioned at the base of Atoposauridae, although this likely reflects its incomplete nature. Incorporation of putative atoposaurids, such as Karatausuchus from the Late Jurassic of Kazakhstan, will be crucial in clarifying these relationships. Our revision of atoposaurids leads us to recognise the existence of three sympatric genera in the Late Jurassic of western Europe, with a distinct species of Alligatorellus, Alligatorium, and Atoposaurus present in both French and German basins. This high diversity of closely related species might have been caused by allopatric speciation, driven by fluctuating highstand sea-levels during an interval when western Europe formed an island archipelago system. It is possible that the small body size of atoposaurids resulted from island dwarfing during this interval, but testing of this idea will have to await the discovery of more basal forms from non-island settings.


1985 ◽  
Vol 4 (1) ◽  
pp. 131-149 ◽  
Author(s):  
B. Thusu ◽  
J. G. L. A. Van Der Eem

Abstract. INTRODUCTIONThis study is primarily concerned with the Neocomian to Aptian palynomorphs recorded in selected exploration wells (See Fig. 9). In order to document a complete Early Cretaceous microfloral succession in the studied wells, a reconnaissance of Aptian to Early Cenomanian palynomorphs was also undertaken. Details of the results from this younger interval appear in a later section.Palynomorph assemblages vary in preservation and character. To the north, sandstone, siltstone and shale deposited in shallow-marine environments, contain well-preserved assemblages of dinoflagellate cysts, pollen and spores which can be used for stage-level age determination. A majority of the samples analysed, however, contain moderate numbers of dinoflagellate cysts, but fewer miospores. The abundance of land derived detritus indicates the relatively close proximity of the shoreline. In the central and southern parts of the study area, sandstone and siltstone that are deposited in non-marine, fluvial, lacustrine or lagoonal environments show a general paucity of well-preserved palynofloras. Miospores of stratigraphic value are generally rare or absent although the majority of the samples are dominated by land derived detritus.PALYNOMORPH SUCCESSIONThe majority of the wells from northern Cyrenaica show a hiatus at the Jurassic Cretaceous boundary. Late Neocomian or Aptian sediments occur immediately above Middle or early Late Jurassic sediments. Well preserved Neocomian palynomorphs were recorded in wells A1-36, B1-36, Bla-18 and A1-45. The stratigraphical ranges of palynomorphs presented on the plate explanations are local ranges and are based on the studied intervals only. A preliminary palynological zonation of Late Jurassic (Late Kimmeridgian) to . . .


1994 ◽  
Vol 131 (2) ◽  
pp. 155-168 ◽  
Author(s):  
E. Roca ◽  
J. Guimerà ◽  
R. Salas

AbstractThe Desert de les Palmes area, in the southeast Iberian Chain, belongs to a Mesozoic NE–SW high which separated the early Cretaceous basins of the Maestrat and Aliaga-Penyagolosa from the little Orpesa basin. Its structure is characterized by the development of a system of NE–SW to ENE–WSW extensional listric faults detached in a shallow upper crustal level (1.7–2.2 km), mostly affecting the pre-Upper Cretaceous rocks. These faults record two well-differentiated rifting periods: (1) a first late Triassic–early Jurassic rifting period that divided the Desert de les Palmes high in several blocks; (2) a second early Cretaceous rifting period, only developed in the eastern margin of the Desert de les Palmes high, which was related to the opening of the Maestrat, Aliaga-Penyagolosa and Orpesa basins. Based on the comparison of the main features of this Mesozoic structure with an analysis of the structural and subsidence data already known in the neighbouring Mesozoic basins (Maestrat, Aliaga-Penyagolosa and Columbrets), a geodynamic scenario for the crustal evolution of the eastern Iberian Chain is also suggested. This involves four evolutionary stages: (1) Triassic rift (late Permian–Hettangian); (2) early and middle Jurassic postrift (Sinemurian–Oxfordian); (3) late Jurassic and early Cretaceous rift (Kimmeridgian–middle Albian), which includes a short Hauterivian postrift period; and (4) late Cretaceous postrift (late Albian–Maastrichtian).


Sign in / Sign up

Export Citation Format

Share Document