scholarly journals Electron polarisation

Dirac’s modified wave equation which successfully accounts for many of the phenomena interpreted as due to the spin of orbital electrons, also predicts that the free electron should have a spin. On this basis each electron wave is characterised by a definite direction other than that of propagation, and an electron beam should be capable of exhibiting polarisation. A method for the production and detection of a polarised electron beam is suggested by the double scattering experiments for the production and detection of polarised X-rays, especially in view of the similarity between diffraction phenomena for electrons and electromagnetic waves. Double scattering experiments have been performed by a number of investi­gators and it has been well established that no observable effect is found with electrons having energies in the neighbourhood of 100 volts.* With very much higher energies, however, an asymmetry in the intensity distribution of the secondary scattering appears to exist, although the evidence is somewhat contradictory and incomplete. This paper gives an account of a double scattering experiment in which electrons were successively reflected at approxi­mately 90° from thick polycrystalline tungsten targets. The results extend the region in which the asymmetry in the secondary scattering is known to be less than 1 per cent, to electron energies of 10 kilovolts.

Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


1963 ◽  
Vol 41 (10) ◽  
pp. 1702-1711 ◽  
Author(s):  
Mahendra Singh Sodha ◽  
Carl J. Palumbo

In this communication the authors have obtained an expression for current density in a slightly ionized uniform plasma in the presence of a number of electric fields of different frequencies by solving the appropriate Boltzmann's equation. This expression along with the wave equation has been used to investigate the nonlinear mutual interaction of a number of electromagnetic waves, propagating in a plasma. Limitations of the present analysis have also been indicated and the physical significance of the results has been discussed. The technique has also been applied to investigate the mutual interaction of amplitude-modulated waves, and the results express a generalization of Luxembourg effect to a number of strong modulated waves.


2014 ◽  
Vol 606 ◽  
pp. 265-268 ◽  
Author(s):  
Martin Bednarik ◽  
David Manas ◽  
Miroslav Manas ◽  
Martin Ovsik ◽  
Jan Navratil ◽  
...  

Radiation cross-linking gives inexpensive commodity plastics and technical plastics the mechanical, thermal, and chemical properties of high-performance plastic. This upgrading of the plastics enables them to be used in conditions which they would not be able to with stand otherwise. The irradiation cross-linking of thermoplastic materials via electron beam or cobalt 60 (gammy rays) is performed separately, after processing. Generally, ionizing radiation includes accelerated electrons, gamma rays and X-rays. Radiation processing with an electron beam offers several distinct advantages when compared with other radiation sources, particularly γ-rays and x-rays. The process is very fast, clean and can be controlled with much precision. There is no permanent radioactivity since the machine can be switched off. In contrast to γ-rays and x-rays, the electron beam can steered relatively easily, thus allowing irradiation of a variety of physical shapes. The energy-rich beta rays trigger chemical reactions in the plastics which results in networking of molecules (comparable to the vulcanization of rubbers which has been in industrial use for so long). The energy from the rays is absorbed by the material and cleavage of chemical bonds takes place. This releases free radicals which in next phase from desired molecular bonds. This article describes the effect of radiation cross-linking on the surface and adhesive properties of low-density polyethylene.


2001 ◽  
Vol 7 (S2) ◽  
pp. 344-345
Author(s):  
G. Möbus ◽  
R.E. Dunin-Borkowski ◽  
C.J.D. Hethėrington ◽  
J.L. Hutchison

Introduction:Atomically resolved chemical analysis using techniques such as electron energy loss spectroscopy and annular dark field imaging relies on the ability to form a well-characterised sub-nm electron beam in a FEGTEM/STEM [1-2]. to understand EELS+EDX-signal formation upon propagation of a sub-nm beam through materials we first have to assess precisely the beam intensity distribution in vacuum and find conditions for the best obtainable resolution.Experimental Details:Modern TEM/STEM instruments combine features of both imaging and scanning technology. The beam forming capability approaches closely that for dedicated STEMs, while CCD recording devices allow us to measure the beam profile by direct imaging at magnifications up to 1.5 M. The recording of a “z-section” series through the 3D intensity distribution of the cross-over can therefore be realised by recording of a “condenser focal series”.


Some of these could also be operated in the energy range above lOMeV for experiments designed to determine at which energy level radioactivity can be induced in the irradiated medium. A linac with a maximum energy of 25 MeV was commissioned for the U.S. Army Natick Research and Development Labora­ tories in 1963. Its beam power was 6.5 kW at an electron energy of 10 MeV, 18 kW at 24 MeV. Assuming 100% efficiency, a 1-kW beam can irradiate 360 kg of product with a dose of 10 kGy/h. The efficiency of electron accelerators is higher than that of gamma sources because the electron beam can be directed at the product, whereas the gamma sources emit radiation in all directions. An efficiency of 50% is a realistic assumption for accelerator facilities. With that and 6.5 kW beam power an accelerator of the type built for the Natick laboratories can process about 1.2t/h at 10 kGy. In Odessa in the former Soviet Union, now in the Ukraine, two 20-kW accelerators with an energy of 1.4 MeV installed next to a grain elevator went into operation in 1983. Each accelerator has the capacity to irradiate 200 t of wheat per hour with a dose of 200 Gy for insect disinfestation. This corresponds to a beam utilization of 56% (9). In France, a facility for electron irradiation of frozen deboned chicken meat commenced operation at Berric near Vannes (Brittany) in late 1986. The purpose of irradiation is to improve the hygienic quality of the meat by destroying salmonella and other disease-causing (pathogenic) microorganisms. The electron beam accelerator is a 7 MeV/10 kW Cassitron built by CGR-MeV (10). An irradiation facility of this type is shown in Figure . Because of their relatively low depth of penetration electron beams cannot be used for the irradiation of animal carcasses, large packages, or other thick materials. However, this difficulty can be overcome by converting the electrons to x-rays. As indicated in Figure 9, this can be done by fitting a water-cooled metal plate to the scanner. Whereas in conventional x-ray tubes the conversion of electron energy to x-ray energy occurs only with an efficiency of about %, much higher efficiencies can be achieved in electron accelerators. The conversion efficiency depends on the material of the converter plate (target) and on the electron energy. Copper converts 5-MeV electrons with about 7% efficiency, 10-MeV electrons with 12% efficiency. A tungsten target can convert 5-MeV electrons with about 20%, 10-MeV electrons with 30% efficiency. (Exact values depend on target thickness.) In contrast to the distinct gamma radiation energy emitted from radionuclides and to the monoenergetic electrons produced by accelerators, the energy spectrum of x-rays is continuous from the value equivalent to the energy of the bombarding electrons to zero. The intensity of this spectrum peaks at about one-tenth of the maximum energy value. The exact location of the intensity peak depends on the thickness of the converter plate and on some other factors. As indicated in Figure

1995 ◽  
pp. 40-40

Sign in / Sign up

Export Citation Format

Share Document