The aerodynamic drag of a free water surface

The drag exerted by wind on a water surface has been measured in a tunnel 7·5 cm. wide and 7 m. long in which winds up to 14 m. /sec. can be made. The waves thus formed are similar to those seen at sea. A device increases the effective fetch and therefore the size of the waves. The drag is measured by the slope of the mean water surface. The shear-stress coefficient γ 2 a = τ / ρu 2 a increases nearly linearly with wind speed, and the drag therefore increases nearly with the cube of the speed. There is a not unsatisfactory agreement with field results of shear coefficient, when the wind velocity is extrapolated to the greater height at which it is usually measured over the sea. It is thought that this agreement between the drag of small laboratory waves and large field waves may show that the mechanism for drag is not controlled by the wave size or speed, but perhaps by the tiny wind ripples. The variation of wind speed with height has been measured. The profiles sometimes show anomalies in the zone up to about 8 cm. above the crests, there being slow layers of air between faster ones. The height of the anomalous zone increases as the waves become higher. Above 8 cm. the usual rough boundary law holds good. An empirical law is given for the shear stress as a function of the speed of the surface layer of water.

Author(s):  
M. H. Kamran Siddiqui ◽  
Mark R. Loewen

Microscale breaking waves are short wind-generated waves that break without air entrainment. At low to moderate wind speeds microscale breaking waves play an important role in enhancing air-water heat and gas transfer. We report on a series of experiments conducted in a wind-wave flume at Harris Hydraulics Laboratory (University of Washington, Seattle) designed to investigate the importance of microscale breaking waves in generating near-surface turbulence and in enhancing air-sea gas and heat transfer rates. Non-invasive experiments were performed at wind speeds ranging from 4.5 m/s to 11 m/s and at a fetch of 5.5 m. The skin-layer or water surface temperature was measured using an infrared (IR) imager and digital particle image velocimetry (DPIV) was used to obtain simultaneous measurements of the two-dimensional velocities immediately below the water surface. Analysis of the simultaneous DPIV and infrared datasets revealed that microscale breaking waves generate strong vortices in their crests that disrupt the cool skin layer at the water surface and create thermal wakes that are visible in the infrared images. While non-breaking waves do not generate strong vortices and hence do not disrupt the skin layer. We developed a scheme based on the magnitude of vorticity in the wave crest to identify microscale breaking waves. The results show that at a wind speed of 4.5 m/s, 11% of the waves broke. The percentage of breaking waves increased with wind speed and at a wind speed of 11 m/s, 91% of the waves were microscale breaking waves. Comparison of different geometric and flow properties of microscale breaking and non-breaking waves revealed that microscale breaking waves are steeper, larger in amplitude and generate more turbulent kinetic energy compared to non-breaking waves.


1974 ◽  
Vol 96 (2) ◽  
pp. 97-102 ◽  
Author(s):  
E. Kordyban

The interfacial shear stress for air flowing over a wavy water surface was determined experimentally in a closed horizontal channel by measuring the pressure drop and the structure of the water surface. The wall shear stress was measured with the aid of a Preston gauge. The range of tests included the conditions where the waves were large in comparison to the channel cross section. The equivalent sand roughness determined from the resistance formula for rough walls in fully turbulent flow was found to be related to the rms wave height through ks = 32Δh.


2019 ◽  
Author(s):  
Kerstin E. Krall ◽  
Bernd Jähne

Abstract. Gas transfer velocities were measured in two high-speed wind-wave tanks (Kyoto University and the SUSTAIN facility, RSMAS, University of Miami) using fresh water, simulated seawater and seawater for wind speeds between 7 and 80 m s−1. Using a mass balance technique, transfer velocities of a total of 12 trace gases were measured, with dimensionless solubilities ranging from 0.005 to 150 and Schmidt numbers between 149 and 1360. This choice of tracers allowed to separate gas transfer across the free interface from gas transfer at closed bubble surfaces. The major effect found was a very steep increase of the gas transfer across the free water surface at wind speeds beyond 33 m s−1, which is the same for fresh water, simulated seawater and seawater. This steep increase might start at a lower wind speed in the open ocean as compared to the short-fetch wind-wave tanks. Bubble-induced gas transfer plays no significant role for all tracers in fresh water and for tracers with moderate solubility such as carbon dioxide and DMS in seawater, while for low solubility tracers bubble-induced gas transfer in seawater was found to be about 1.7 times larger than the transfer at the free water surface at the highest wind speed of 80 m s−1.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Muhammad Irvan Nurliansyah

ABSTRAK Limbah cair tahu merupakan limbah cair yang berasal dari proses pembuatan tahu. Limbah cair tahu mengandung senyawa organik yang tinggi. Pembuangan limbah cair tahu secara langsung ke badan air tanpa dilakukan pengolahan dapat mempengaruhi dan mencemari lingkungan. Suatu cara untuk menanggulangi permasalahan tersebut adalah melakukan pengolahan limbah cair tahu. Salah satu alternatif pengolahan limbah cair tahu yang dapat digunakan adalah fitoremediasi menggunakan tanaman genjer. Penelitian ini bertujuan untuk mengetahui efisiensi pengolahan dan efektivitas waktu tinggal pengolahan limbah cair tahu menggunakan tanaman genjer dalam menurunkan BOD dan COD effluen hasil proses pengolahan anaerob limbah cair tahu. Metode yang digunakan dalam penelitian ini adalah fitoremediasi menggunakan tanaman genjer pada sistem lahan basah buatan Free Water Surface flow dengan waktu tinggal 3 hari, 5 hari dan 7 hari. Hasil penelitian menunjukkan bahwa efisiensi pengolahan secara fitoremediasi pada hari ke 3 untuk BOD dan COD berturut-turut sebesar 21,28% dan 16,13%. Pada hari ke 5 efisiensi pengolahan yang diperoleh untuk BOD dan COD berturut-turut sebesar 52,60% dan 45,93% sedangkan efisiensi pengolahan pada hari ke 7 untuk BOD dan COD berturut-turut sebesar 76,42% dan 70,74%. Waktu tinggal efektif yang diperoleh pada penelitian ini adalah  7 hari dengan nilai BOD dan COD telah berada dibawah baku mutu yaitu berturut-turut sebesar 72,72 mg/l dan 213,33 mg/l.   Kata kunci : limbah cair tahu, fitoremediasi, tanaman genjer, efisiensi pengolahan, waktu tinggal


Author(s):  
Joanes E Koagouw ◽  
Gybert E Mamuaya ◽  
Adrie A Tarumingkeng ◽  
P A Angmalisang

Coastal area of Bitung Municipality is one of the economical activities centers in North Sulawesi Province such as for land-uses and the exploitation of natural resources. Those activities are exaggerating day bay day and tended to be uncontrollable. The excess of those conditions, it has been recorded the change of waves in Bitung waters that has impacts to coastal areas and can affect the utilization of coastal and marine resources. This research was aimed to observe waves altitude variations in Bitung waters with Svedrup Munk and Bretchsneider (SMB) method that had been used to predict waves altitudes. The results showed that the wind speed during West Season was 0.33 m and were dominant to the East, while during East season was 0.91m from South-East to North-West, and then on transition period (March to May) was 1.08m from South-East to East. The results of those wind speed to the waves altitudes in Bitung waters is discussed in this paper© Pesisir pantai Kota Bitung merupakan salah satu pusat aktivitas ekonomi (misalnya pemanfaatan lahan dan eksploitasi sumberdaya) di Provinsi Sulawesi Utara. Aktivitas tersebut semakin hari semakin meningkat dan memiliki kecenderungan tidak terkontrol. Akibat dari keadaan tersebut, telah terjadi perubahan fenomena gelombang di perairan Bitung yang berdampak pada keberadaan daerah pesisir pantai di mana hal ini dapat mengganggu aktivitas pemanfaatan sumberdaya pesisir dan laut tersebut. Penelitian ini bertujuan untuk mengetahui variasi tinggi gelombang di perairan Bitung dengan menggunakan metode Svedrup Munk and Bretchsneider (SMB) yang biasa digunakan untuk peramalan tinggi gelombang signifikan. Hasil penelitian menunjukkan bahwa kecepatan angin pada Musim Barat sebesar 0,33 meter dan dominan ke arah Timur, sementara pada Musim Timur sebesar 0,91 meter dari arah Tenggara ke Barat Laut, serta pada Musim Peralihan (antara bulan Maret-Mei) adalah sebesar 1,08 meter dari arah Tenggara dan Timur. Pengaruh kecepatan angin tersebut terhadap gelombang laut di perairan Bitung dibahas dalam tulisan ini©


1998 ◽  
Vol 37 (12) ◽  
pp. 255-261 ◽  
Author(s):  
Mark Johnson

A simple, laser-based reflectometer is described for the measurement of water turbidity via 180° optical scattering. Applications exist both in clean source waters (0-1000NTU) with a minimum detectable turbidity better than 1NTU, and in dense wastewater primary-clarifier sludges. The non-contact measurement is performed from a distance at least up to 10m, substantially avoiding the usual window fouling problems of optical instruments. By measuring directly in the process, through a free water surface or on the side of a flowing water stream, the difficulties of transporting sample to the instrument are also avoided. Extensions to be described allow measurement also of water colour.


2011 ◽  
Vol 33 (1) ◽  
pp. 71-86
Author(s):  
Doorce S. Batubara ◽  
Donald Dean Adrian

Sign in / Sign up

Export Citation Format

Share Document