Calculation of the primary trajectories of seeds and other particles in strong winds

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established that describes this resistance fairly accurately for particle Reynolds numbers in the range 0-60000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow.

1983 ◽  
Vol 219 (1215) ◽  
pp. 217-217

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, and released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established which describes this resistance fairly accurately for particle Reynolds numbers in the range 0—60 000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow. Botanists and ecologists concerned with seed and particle dispersal in the environment may find the universal range tables of particular interest and use. This is because the tables obviate the need for the integration of the equations of motion when dealing with individual cases and permit an estimation of range purely on the basis of the specified quantities of particle size, density and altitude of release, atmospheric wind speed, density and viscosity, and the acceleration due to gravity.


An experimental and theoretical study has been made of the aerodynamic drag torque on a sphere rotating in a rarefied gas. The drag torque on a magnetically suspended polished steel sphere rotating in air was measured over a wide range of Knudsen numbers from continuum to free molecule flow and for several different Mach numbers up to ca . 1. The drag under free molecule conditions was found to be consistent with the assumption of perfectly diffuse reflexion of molecules at the surface of the rotor. An approximate theory is derived which is analogous to Millikan’s solution to the problem of plane Couette flow and is valid for low Mach and Reynolds numbers. Theory and experiment are found to agree to within 10 % in the range investigated, for Reynolds numbers less than ca . 20.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 1168-1177 ◽  
Author(s):  
Chao Liu ◽  
Guoqing Hu ◽  
Xingyu Jiang ◽  
Jiashu Sun

This work provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers.


Author(s):  
G Jourdan ◽  
L Houas ◽  
O Igra ◽  
J.-L Estivalezes ◽  
C Devals ◽  
...  

The drag coefficient of a sphere placed in a non-stationary flow is studied experimentally over a wide range of Reynolds numbers in subsonic and supersonic flows. Experiments were conducted in a shock tube where the investigated balls were suspended, far from all the tube walls, on a very thin wire taken from a spider web. During each experiment, many shadowgraph photos were taken to enable an accurate construction of the sphere's trajectory. Based on the sphere's trajectory, its drag coefficient was evaluated. It was shown that a large difference exists between the sphere drag coefficient in steady and non-steady flows. In the investigated range of Reynolds numbers, the difference exceeds 50%. Based on the obtained results, a correlation for the non-stationary drag coefficient of a sphere is given. This correlation can be used safely in simulating two-phase flows composed of small spherical particles immersed in a gaseous medium.


1978 ◽  
Vol 100 (4) ◽  
pp. 467-472 ◽  
Author(s):  
F. E. B. Nigro ◽  
A. B. Strong ◽  
S. A. Alpay

The present paper discusses a numerical algorithm for the solution of the steady flow of a viscous fluid through a pipe orifice which allows for considerable flexibility in the choice of orifice plate geometry. The results are compared to the data for a wide range of Reynolds numbers in the laminar regime and orifice/pipe diameter ratios for a 45 deg sharp edged orifice plate, a square edged orifice plate and a thin orifice plate. Based on the initial results presented here the numerical algorithm is deemed to provide a fast, accurate and relatively easy way of examining the effects of a wide variety of orifice plate geometries and flow situations. The solution efficiency is made possible by solving the equations of motion in general orthogonal coordinates.


2020 ◽  
Author(s):  
Xiangwen Wang ◽  
Dimitrios Toroz ◽  
Seonmyeong Kim ◽  
Simon Clegg ◽  
Gun-Sik Park ◽  
...  

<div> <p>As natural aqueous solutions are far from being pure water, being rich in ions, the properties of solvated ions are of relevance for a wide range of systems, including biological and geochemical environments. We conducted ab initio and classical MD simulations of the alkaline earth metal ions Mg<sup>2+</sup> and Ca<sup>2+</sup> and of the alkali metal ions Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and Cs<sup>+</sup> in pure water and electrolyte solutions containing the counterions Cl<sup>–</sup> and SO<sub>4</sub><sup>2–</sup>. Through a detailed analysis of these simulations, this study reports on the effect of solution chemistry (composition and concentration of the solution) to the ion–water structural properties and interaction strength, and to the dynamics, hydrogen bond network, and low-frequency dynamics of the ionic solvation shell. Except for the ion–water radial distribution function, which is weakly dependent on the counter-ions and concentrations, we found that all other properties can be significantly influenced by the chemical characteristics of the solution. Calculation of the velocity autocorrelation function of magnesium ions, for example, shows that chlorine ions located in the second coordination shell of Mg<sup>2+</sup> weaken the Mg(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> hydration ‘cage’ of the cation. The result reported in this study suggest that ionic solvation shell can be significantly influenced by the interactions between other ions present in solution ions, especially those of opposite charge. In more general terms, the chemical characteristics of the solution, including the balance between ion-solvent and ion-ion interactions, could result in significant differences in behavior and function of the ionic solvation shell.</p> </div>


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 263
Author(s):  
Tianlong Zhang ◽  
Yigang Shen ◽  
Ryota Kiya ◽  
Dian Anggraini ◽  
Tao Tang ◽  
...  

Continuous microfluidic focusing of particles, both synthetic and biological, is significant for a wide range of applications in industry, biology and biomedicine. In this study, we demonstrate the focusing of particles in a microchannel embedded with glass grooves engraved by femtosecond pulse (fs) laser. Results showed that the laser-engraved microstructures were capable of directing polystyrene particles and mouse myoblast cells (C2C12) towards the center of the microchannel at low Reynolds numbers (Re < 1). Numerical simulation revealed that localized side-to-center secondary flows induced by grooves at the channel bottom play an essential role in particle lateral displacement. Additionally, the focusing performance proved to be dependent on the angle of grooves and the middle open space between the grooves based on both experiments and simulation. Particle sedimentation rate was found to critically influence the focusing of particles of different sizes. Taking advantage of the size-dependent particle lateral displacement, selective focusing of micrometer particles was demonstrated. This study systematically investigated continuous particle focusing in a groove-embedded microchannel. We expect that this device will be used for further applications, such as cell sensing and nanoparticle separation in biological and biomedical areas.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


Sign in / Sign up

Export Citation Format

Share Document