scholarly journals Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel

Author(s):  
L. C. D. Fielding ◽  
E. J. Song ◽  
D. K. Han ◽  
H. K. D. H. Bhadeshia ◽  
D.-W. Suh

The diffusion of hydrogen in austenite is slower than in ferrite. Experiments have been conducted to study the behaviour of hydrogen in a nanostructured steel sample consisting of a mixture of thin plates of bainitic ferrite and intervening films of retained austenite, with the latter phase present in a quantity larger than the percolation threshold, i.e. it has three-dimensional connectivity. The structure was then heat treated to control the fraction of austenite, and hence to study the role of hydrogen when the austenite decomposes below the value required to sustain percolation. The experiments have involved both thermal desorption analysis and permeation, and when combined with theoretical analysis, indicate a significant influence of percolating austenite in hindering the passage of hydrogen into the steel during hydrogen charging, and its permeation through the composite nanostructure. The effect is not as large as might be expected from a simple comparison of independent data on the diffusivities of hydrogen in the two lattices, because the effective diffusivity in ferrite is found to be much smaller than in the defect-free ferrite, owing to trapping effects. The morphology of the austenite is demonstrated to play a role by comparing with a sample containing a larger volume fraction of austenite but present as isolated grains which are ineffective to the permeation of hydrogen.

2013 ◽  
Vol 66 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Xiaoping Ma ◽  
Cheng Zhou ◽  
Lijun Wang ◽  
Chunming Liu ◽  
Sundaresa Subramanian ◽  
...  

The effect of Nb microalloying on structure and physical properties of quenched and tempered 13%Cr martensitic stainless steel was investigated. Excellent strength and adequate toughness properties were obtained by 0.10 wt% Nb addition to low interstitial (N 0.01wt%, C < 0.02wt%) steel. The effect of Nb in 13%Cr steels with high N content was also studied in a commercial martensitic stainless steel sample containing higher levels of N and also alloyed with V. The microstructure, precipitate morphology and dispersion and volume fraction of reverse austenite were characterized. The strength properties obtained in the steel with 0.10%Nb are significantly higher than those of the V-containing steel. The study shows that whereas amount, size and dispersion of precipitates of microalloying elements contribute to enhanced strength, the optimum volume fraction of reverse austenite formed contributes to enhanced ductility and toughness properties. More importantly, high Nb additions to low N -13%Cr-1%Mo steel are found to improve significantly resistance against pitting corrosion significantly.


2011 ◽  
Vol 172-174 ◽  
pp. 123-128 ◽  
Author(s):  
Peter D. Hodgson ◽  
Ilana Timokhina ◽  
Xiang Yuan Xiong ◽  
Yoshitaka Adachi ◽  
Hossein Beladi

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to form a nano-scale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with the parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. The presence of fine C-rich clusters and Fe-C carbides with a wide range of compositions in bainitic ferrite was revealed by Three-dimensional Atom Probe Tomography (APT). The high carbon content of bainitic ferrite compared to the para-equilibrium level of carbon in ferrite, absence of segregation of carbon to the austenite/bainitic ferrite interface and absence of partitioning of substitutional elements between the retained austenite and bainitic ferrite were also found using APT.


2018 ◽  
Vol 74 (11) ◽  
pp. 1274-1283 ◽  
Author(s):  
Shounik Paul ◽  
S. S. Sreejith ◽  
Soumyajit Roy

In this work, we demonstrate a simple approach for growing 1D (one-dimensional) inorganic chains of K(C6H16N)3Mo8O26·H2O polyoxometalates (POMs) from its colloidal soft-oxometalate (SOM) phase through the variation of pH. The structure is composed mainly of a 1D inorganic chain with a β-Mo8O26 4− binding node linked using K+ via Mo—O—K linkages, which results in a cuboctahedral geometry for the K+ ions. Crystal structure and Hirshfeld surface studies reveal the role of triethylammonium cations in restricting the growth of the 1D chain into 2D/3D (two-/three-dimensional) structures. During the nucleation process from the heterogeneous SOM phase, some of the intermolecular interactions in the dispersion phase are retained in the crystal structure, which was evidenced from residual O...O interactions. The crystallization of the species from its colloidal form as a function of pH was studied by the use of Raman spectroscopy and it was found that the increase in volume fraction of the β-Mo8O26 4− species in the crystallizing colloidal mixture with the decrease in pH is responsible for the nucleation. This was monitored by time-dependent DLS (dynamic light scattering) measurement and zeta-potential studies, revealing the co-existence of both the crystal and the colloidal forms at pH 3–2. This brings us to the conclusion that in the crystallization of POMs, the colloidal SOM phase precedes the crystalline POM phase which occurs via a phase transition. This work could open up avenues for the study of POM formation from the stand-point of colloidal chemistry and SOMs.


1997 ◽  
Vol 467 ◽  
Author(s):  
E. H. C. Ullersma ◽  
D. K. Inia ◽  
F.H.P.M. Habraken ◽  
W.G.J.H.M. Van Sark ◽  
W. F. Van Der Weg ◽  
...  

ABSTRACTWe used Fourier Transform Infra-Red (FTIR) analysis of bi-layers of plasma-grown hy-drogenated amorphous silicon-carbide films to investigate the role of the material structure in the hydrogen diffusion process. In the bi-layers one layer was deposited using CH4/SiH4 and in the other layer CD4/SiD4 was applied. The carbon concentration was 20 at.%. In previous work we showed, using Elastic Recoil Detection (ERD) and Thermal Desorption Spectrometry (TDS), that the hydrogen moves molecular through these films in the temperature range 325 < T < 450 °C [1]. Using FTIR we obtained information about the number of Si-H and Si-D bonds and their change upon annealing. The FTIR data indicate a structural change during annealing. A comparison with the TDS spectra led us to the conclusion that at higher temperatures the out-diffusion of hydrogen stops because of the hindrance of the molecular transport.


1987 ◽  
Vol 95 ◽  
Author(s):  
R. A. Street

AbstractThis paper reviews the recent evidence for thermal equilibrium effects in the electronic behavior of hydrogenated amorphous silicon, and relates the thermally induced changes to the motion of bonded hydrogen. The electronic properties are studied through measurements of d.c conductivity and-.weep out, and the role of hydrogen is explored through its diffusion. The magnitude and doping dependence of the diffusion coefficient DH matches the data on the equilibration of the electronic states. Furthermore both the diffusibn and the relaxation can be described by the same dispersive time dependence. It is argued that the diffusion of hydrogen is the rate limiting step in the the equilibration mechanisms and determines the kinetics.


2019 ◽  
Vol 116 (4) ◽  
pp. 1104-1109 ◽  
Author(s):  
Chih-Han Wang ◽  
Chih-Chien Lee ◽  
Gwo-Tzong Huang ◽  
Jie-Yu Yang ◽  
Ming-Jye Wang ◽  
...  

The exact superconducting phase of K2−xFe4+ySe5 has so far not been conclusively decided since its discovery due to its intrinsic multiphase in early material. In an attempt to resolve this mystery, we have carried out systematic structural studies on a set of well-controlled samples with exact chemical stoichiometry K2−xFe4+xSe5 (x = 0–0.3) that are heat-treated at different temperatures. Using high-resolution synchrotron radiation X-ray diffraction, our investigations have determined the superconducting transition by focusing on the detailed temperature evolution of the crystalline phases. Our results show that superconductivity appears only in those samples that have been treated at high-enough temperature and then quenched to room temperature. The volume fraction of superconducting transition strongly depends on the annealing temperature used. The most striking result is the observation of a clear contrast in crystalline phase between the nonsuperconducting parent compound K2Fe4Se5 and the superconducting K2−xFe4+ySe5 samples. The X-ray diffraction patterned can be well indexed to the phase with I4/m symmetry in all temperatures investigated. However, we need two phases with similar I4/m symmetry but different parameters to best fit the data at a temperature below the Fe vacancy order temperature. The results strongly suggest that superconductivity in K2−xFe4+ySe5 critically depends on the occupation of Fe atoms on the originally empty 4d site.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D.J. Matlock ◽  
W.W. Fisher ◽  
P.M. Tarin ◽  
...  

Coherent annealing-twin boundaries are constant structure and energy interfaces with an average interfacial free energy of ∼19mJ/m2 versus ∼210 and ∼835mJ/m2 for incoherent twins and “regular” grain boundaries respectively in 304 stainless steels (SS). Due to their low energy, coherent twins form carbides about a factor of 100 slower than grain boundaries, and limited work has also shown differences in Cr-depletion (sensitization) between twin versus grain boundaries. Plastic deformation, may, however, alter the kinetics and thermodynamics of twin-sensitization which is not well understood. The objective of this work was to understand the mechanisms of carbide precipitation and Cr-depletion on coherent twin boundaries in deformed SS. The research is directed toward using this invariant structure and energy interface to understand and model the role of interfacial characteristics on deformation-induced sensitization in SS. Carbides and Cr-depletion were examined on a 20%-strain, 0.051%C-304SS, heat treated to 625°C-4.5h, as described elsewhere.


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Sign in / Sign up

Export Citation Format

Share Document