scholarly journals Role of the extra Fe in K2−xFe4+ySe5 superconductors

2019 ◽  
Vol 116 (4) ◽  
pp. 1104-1109 ◽  
Author(s):  
Chih-Han Wang ◽  
Chih-Chien Lee ◽  
Gwo-Tzong Huang ◽  
Jie-Yu Yang ◽  
Ming-Jye Wang ◽  
...  

The exact superconducting phase of K2−xFe4+ySe5 has so far not been conclusively decided since its discovery due to its intrinsic multiphase in early material. In an attempt to resolve this mystery, we have carried out systematic structural studies on a set of well-controlled samples with exact chemical stoichiometry K2−xFe4+xSe5 (x = 0–0.3) that are heat-treated at different temperatures. Using high-resolution synchrotron radiation X-ray diffraction, our investigations have determined the superconducting transition by focusing on the detailed temperature evolution of the crystalline phases. Our results show that superconductivity appears only in those samples that have been treated at high-enough temperature and then quenched to room temperature. The volume fraction of superconducting transition strongly depends on the annealing temperature used. The most striking result is the observation of a clear contrast in crystalline phase between the nonsuperconducting parent compound K2Fe4Se5 and the superconducting K2−xFe4+ySe5 samples. The X-ray diffraction patterned can be well indexed to the phase with I4/m symmetry in all temperatures investigated. However, we need two phases with similar I4/m symmetry but different parameters to best fit the data at a temperature below the Fe vacancy order temperature. The results strongly suggest that superconductivity in K2−xFe4+ySe5 critically depends on the occupation of Fe atoms on the originally empty 4d site.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


1999 ◽  
Vol 580 ◽  
Author(s):  
D.B. Migas ◽  
M. Iannuzzi ◽  
Leo Miglio ◽  
F. La Via ◽  
M.G. Grimaldi

AbstractWe discuss the rather scattered measurements of the lattice parameters for C49 TiSi2, which are reported in literature, along with new and accurate X-ray diffraction measurements and ab-initio calculations. Both agree in indicating that the density of the metastable C49 structure cannot be much smaller than the one for the polymorphic C54 phase, as it is commonly reported. We conclude by demonstrating that only in the case of such a smaller difference in density between the two phases, the elastic strain contribution to the nucleation energy of the C54 structure in the C49 matrix can be neglected. The estimation of the critical radius strongly depends on this issue.


2017 ◽  
Vol 36 (3) ◽  
pp. 291-297
Author(s):  
Maryana Zagula-Yavorska ◽  
Kamil Gancarczyk ◽  
Jan Sieniawski

AbstractCMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.


2014 ◽  
Vol 92 ◽  
pp. 8-13
Author(s):  
Laëticia Vidal ◽  
Emmanuel Joussein ◽  
Joseph Absi ◽  
Sylvie Rossignol

Geopolymers are inorganic materials obtained by the alkaline activation of aluminosilicate sources. The ammonium molybdate could be used as a complexant for silica in order to complex the siliceous species in the alkaline solution. According to this, the aim of this work is to control the siliceous species and to understand the role of ammonium molybdate as a complexing agent acting on the formation of the different networks. To do this, additions of ammonium molybdate (up to 0.32% molar) in the silicate solution were realized along the formulation of geopolymer using two metakaolins. The results highlight that the addition of ammonium molybdate in geopolymer results in a decrease of the shrinkage at high temperature. Moreover, X-ray diffraction data and SEM after calcination show that geopolymers without ammonium molybdate form two phases (KAlSi2O6 and KAlSiO4) while with additions of molybdate, there were only the phase KAlSi2O6 associated with Al2O3 doped Mo and K2Mo2O7. Finally, SEM observations show that additions of ammonium molybdate seem to favor crystallization. The results allow to evidence the role of molybdate in the control of the polycondensation reaction in order to influence the formation of specific network


2007 ◽  
Vol 546-549 ◽  
pp. 1989-1992
Author(s):  
Fang Gao Chang ◽  
Kun Fang ◽  
Gui Lin Song

A superconductor-polymer composite of Bi1.8Pb0.4Sr2Ca2Cu3Oy and ethylene propylene rubber (EPR) was prepared by conventional solid-state reaction method. The phase structure of the composite was characterized by using x-ray diffraction technique. The resistivity of composite samples annealed at different temperatures was measured between 40K and 300K. The results indicate that the resistivity of the as-prepared composite increases with increasing EPR content and shows essentially a semiconducting behavior above Tc. For fixed EPR content, the resistivity of composite samples decreases with increasing annealing temperature. The composite begins to show some signs of superconducting transition at an annealing temperature of 700 °C and zero resistance is reached for samples sintered at 800°C. Thermal gravimetric analysis (TGA) on the composite confirmed that 65% of the EPR content still present in the superconducting composite samples. SEM was used to investigate the surface morphology of the composites. Preliminary results show that the mechanical properties of the composite have been much improved compared with its parent superconductor ceramics.


2015 ◽  
Vol 651-653 ◽  
pp. 645-650 ◽  
Author(s):  
Bernd Kuhfuss ◽  
Eric Moumi ◽  
Brigitte Clausen ◽  
Jeremy Epp ◽  
Bernd Koehler

Wires with 1 mm initial diameter have been reduced between 10 and 64 percent at different temperatures and strain rates by infeed rotary swaging, which is an incremental cold forming process mainly used for rods and pipes. The volume fraction of martensite in the deformed wires has been determined by X-Ray diffraction and by magnetic induction for different processing parameters. Measurements show that for already small percentage of reduction, martensite is present in the wires and its amount changes with the strain rate and temperature. While for smaller strain rates at room temperature the formation of martensite is promoted, it is restrained for higher strain rates and higher temperatures. Results also reveal that the martensite distribution in the sample is inhomogeneous. Further investigations have been made to analyze the microstructure by optical microscopy and to determine mechanical properties by tensile testing.


2021 ◽  
pp. 490-495
Author(s):  
Mohammed J. Tuama ◽  
Lamia K. Abbas

The conventional solid-state reaction method was utilized to prepare a series of superconducting samples of the nominal composition Bi2-xPb0.3WxSr2Ca2Cu3O10+d with 0≤x≤0.5 of 50 nm particle size of tungsten sintered at 8500C for 140h in air . The influence of substitution with W NPs at bismuth (Bi) sites was characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and dc electrical resistivity. Room temperature X-ray diffraction analysis revealed that there exists two phases, i.e. Bi-(2223) and Bi-(2212), in addition to the impurity phases of (SrCa) 2Cu2O3, Sr2Ca2Cu7Oδ, Ca2PbO4, CaO, and WO. It was found that the crystallographic structure of all samples was orthorhombic. Lattice parameter values and the volume fraction of the (2223)-phase of the prepared samples were also calculated. The superconductivity transition temperature (Tc) for samples subjected to substitution with W NPs was found to be higher than that for the pure sample. The optimal value of W NPs content in (Bi, Pb)-2223 system was found to be at x=0.3. 


2012 ◽  
Vol 430-432 ◽  
pp. 146-149 ◽  
Author(s):  
Wen Wang ◽  
Cheng Guo Wang ◽  
Yu Guo

Fe3O4/C composites were prepared by using Fe and polyacrylonitrile (PAN) as precursors, and then heat-treated at temperatures of 600,700 and 800 °C, respectively. The phase composition of the composites at different temperatures was analyzed by X-ray diffraction, and Fe reacted with O from PAN to form Fe3O4, which contributed to the improvement of magnetic loss of the carbon matrix. Electromagnetic and microwave absorption properties of the composites were investigated. The results show that the values of real and imaginary part of permittivity were all increased as the temperature increasing, and also the microwave absorption capability was improved.


2014 ◽  
Vol 631 ◽  
pp. 193-197
Author(s):  
A.M. Escamilla-Pérez ◽  
D.A. Cortés-Hernández ◽  
J.M. Almanza-Robles ◽  
D. Mantovani ◽  
P. Chevallier

Powders of Mg0.4Ca0.6Fe2O4were prepared by sol-gel using ethylene glycol and Mg, Ca and Fe nitrates as starting materials. Those powders were heat treated at different temperatures (300, 400, 500 and 600 °C) for 30 min. The materials obtained were characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The Ca-Mg ferrite with the most appropriate magnetic properties was further analyzed by transmission electron microscopy (TEM). The heating capability of the nanoferrites was also tested via magnetic induction. The XRD patterns of these Ca-Mg ferrites showed a cubic inverse spinel structure. Furthermore, neither traces of hematite nor orthorhombic Ca ferrite phases were detected. Moreover, all the Ca-Mg ferrites are superparamagnetic and the particle size distribution of these Ca-Mg magnetic nanoparticles exhibits an average diameter within the range of 10-14 nm. The needed temperature for hyperthermia treatment was achieved at around 12 min.


Sign in / Sign up

Export Citation Format

Share Document