Air movement and heat loss from sheep. II. Thermal insulation of fleece in wind

1980 ◽  
Vol 209 (1175) ◽  
pp. 209-217 ◽  

Penetration of an animal’s coat by wind reduces its thermal insulation and increases heat loss to the environment. From studies of the sensible heat loss from a life-sized model sheep covered with fleece, the average fleece resistance r¯ f (s cm -1 ) was related to windspeed u (m s -1 ) by 1/ r¯ f ( u ) = l/ r¯ f (0) + cu , where c is a dimensionless constant. As c is expected to be inversely proportional to coat depth Î , the more general relation k¯ ( u ) = k¯ (0) + c'u was evaluated, where k¯ = Î / r¯ f is the thermal diffusivity (cm 2 s -1 ) of the fleece and c' = cÎ is another constant (cm). The orientation of the model to the wind had little effect on the bulk resistance of the fleece, but the resistance on the windward side was substantially lower than on the leeward side.

Author(s):  
Wenjun Gao ◽  
Shuo Zhang ◽  
Xiaohang Li ◽  
Zhenxia Liu

In cylindrical roller bearings, the drag effect may be induced by the rolling element translating in a fluid environment of the bearing cavity. In this article, the computational fluid dynamics method and experimental tests are employed to analyse its flow characteristics and pressure distribution. The results indicate that the pressure difference between the windward side and the leeward side of the cylinder is raised in view of it blocking the flow field. Four whirl vortexes are formed in four outlets of two wedge-shaped areas between the front part of the cylindrical surface and adjacent walls for the cylinder of L/ D = 1.5 at Re = 4.5 × 103. Vortex shedding is found in the direction of cylinder axis at Re = 4.5 × 104. The relationship between drag coefficient and Reynolds number is illustrated, obviously higher than that of the two-dimensional cylinder in open space.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3101
Author(s):  
Yu Wan ◽  
Zhenxiang Yi

In this paper, a novel 2.5-dimensional (2.5D) flexible wind sensor is proposed based on four differential plate capacitors. This design consists of a windward pillar, two electrode layers, and a support layer, which are all made of polydimethylsiloxane (PDMS) with different Young’s moduli. A 2 mm × 2 mm copper electrode array is located on each electrode layer, forming four parallel plate capacitors as the sensitive elements. The wind in the xy-plane tilts the windward pillar, decreasing two capacitances on the windward side and increasing two capacitances on the leeward side. The wind in the z-axis depresses the windward pillar, resulting in an increase of all four capacitances. Experiments demonstrate that this sensor can measure the wind speed up to 23.9 m/s and the wind direction over the full 360° range of the xy-plane. The sensitivities of wind speed are close to 4 fF·m−1·s and 3 fF·m−1·s in the xy-plane and z-axis, respectively.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


1939 ◽  
Vol 39 (1) ◽  
pp. 60-89 ◽  
Author(s):  
Alan J. Canny ◽  
C. J. Martin

It is emphasized that as heat exchange is controlled by the temperature of that boundary layer of molecular dimensions which separates a cooling body from its environment and from which evaporation occurs, attempts to relate heat loss with internal temperature have resulted only in empirical formulae. A rational formula involving the temperature of the evaporating surface is suggested, and it is shown how in the case of a system of sufficient simplicity all the terms can be either measured or derived from experiments.The results of experiments with a small moistened cylinder are detailed illustrating the effect of wind velocity upon evaporative and convective heat loss under the one condition when the evaporating surface remains at constant temperature notwithstanding variations in wind, namely, when the whole system has been cooled to wet-bulb temperature. Evaporative loss is found to vary as V0.65, convective as V0.70.Experiments are next described showing the effect of wind upon evaporative and convective losses when, the internal temperature being constant, the temperature of the evaporating surface fluctuates in consequence of varying wind velocity. Heat loss now varies very closely as V0.5 at velocities greater than 1 m./sec. At velocities below 1 m./sec. the same relation of heat loss to velocity obtains if due allowance be made for natural convection. This square root function is fortuitous, and heat loss varied between the square root and cube root of the velocity as the internal conductivity was diminished.Attention is drawn to the impossibility of forming general conclusions from observations on any particular system, as the way in which the rate of heat loss varies with the velocity of the wind depends not only upon the internal conductivity of the system but also on its size and shape.Observations are described showing the influence of varying the internal temperature on total and evaporative heat loss with constant wind velocity and constant atmospheric conditions. These experiments furnish data from which the surface temperature can be derived from measurements of evaporation, and show that the temperature of the surface and the rate of loss of heat by convection are both linear functions of the internal temperature at any one wind velocity. They also show that the values of the constants of the system derived from experiments at the temperature of the wet bulb are applicable when the cylinder is heated.An analysis of the results of the experiments with varying internal temperature indicates that the temperature of the evaporating surface (ts) is related to the internal temperature (t1) and that of the wet bulb (tw) by the expression The value of C with varying wind velocity is ascertained by experiments, thus affording another means of arriving at the temperature of the evaporating layer. Values of ts obtained in this way are compared with those determined by observing the rate of evaporation and show reasonable agreement.It is shown how, knowing the temperature of the evaporating layer, the constants of the system employed and the effect of velocity of wind upon heat exchange, the rate of loss of heat by evaporation and by convection under given conditions can be predicted. Instances of the agreement between predicted and observed values are given.From the formula representing the influence of atmospheric conditions on heat loss it can be shown, by calculation, that if the wet-bulb temperature remains constant considerable variations in the temperature of the dry-bulb influence but slightly the heat loss from the moist cylinder.It will be seen that the analysis of the effects of environmental changes on the heat loss from a simple physical system such as was used presents no serious difficulties. Such an analysis, unfortunately, does not enable deductions to be made with reference to systems of different physical characteristics. How observations on such systems can be related in other than a qualitative manner to the effects of corresponding changes on living creature differing in size and shape and degree of moistening of their surfaces is not clear. When account is taken of the ability of living beings to alter the vascularity of their surface tissues and so to vary the temperature of the body surface while other factors remain constant, the difficulties in relating the cooling of any physical system to the loss of heat from animals become painfully apparent.The most hopeful method of assessing the effect of air movement and atmospheric conditions on the heat loss from the human body seems to be in terms of a subjectively determined standard such as the effective temperature scale of Houghton & Yaglou. The validity of such a scale has received support from observations by Houghton et al. (1924) and Vernon & Warner (1932) on the relation of pulse rate, body temperature, metabolism and other physiological variables to “effective temperature”.


Author(s):  
Soheil Manouchehri

For un-bonded (sliding) Pipe-In-Pipe (PIP) systems, one of the main components is the centralizers (also called spacers). The main functions of the centralizers are to centralize the inner pipe inside the outer pipe, to transfer the loads between inner pipe and outer pipe and to safeguard the insulation material in the annulus from excessive compression during fabrication, installation and operation. Centralizers must also have good thermal insulation properties so that the heat loss is minimized. Different designs are now available for centralizers but the majority are based on two half shells which are bolted together. During fabrication, installation and operation, centralizers subject to different loads under which they are required to continue functioning properly. This paper provides an overview of centralizer design aspects and then focuses on the loading history during installation using reeling method. The main contributing parameters to centralizer loading during reeled installation technique are discussed and conclusions are drawn. It is believed that this will enable Pipeline Engineers to select the most appropriate material and design for centralizers.


1965 ◽  
Vol 20 (4) ◽  
pp. 796-801 ◽  
Author(s):  
R. T. Tregear

The heat loss from excised pelts of rabbits, horses, and pigs has been measured at various wind speeds. The temperature gradient through the fur was also measured. The thermal insulation of fur is highly dependent on the hair density (i.e., number of hairs/ cm2), and on the wind passing over its surface. If there are less than 1,000 hairs/cm2, an 8-mph wind penetrates deep into the fur, but at higher hair densities an 18-mph wind penetrates only a little way into the fur. fur insulation; obstruction of wind by hair Submitted on September 10, 1964


2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2019 ◽  
Vol 10 (2) ◽  
pp. 59-66
Author(s):  
E. A Biryuzova ◽  
A. S Glukhanov

Through pipelines of heat networks, due to their large length, a large amount of thermal energy is lost. Identification of technical solutions related to improving the energy efficiency of heating networks is an urgent task at present. The article is devoted to the consideration of options for laying pipelines of heat networks during design work. In the conducted studies, two main methods of underground laying of pipelines of heat networks with the choice of the most energy-efficient, with minimal losses of thermal energy are considered. Channel and channelless laying methods are investigated with the same design features and technological conditions of operation of pipelines of heat networks using the same thermal insulation material. For each option, the required thickness of the thermal insulation is determined by the normalized density of the heat flow, thermal calculations are performed to determine the heat loss and the value of the temperature fields generated around the operating pipelines of the heat networks. The obtained values of the thermal insulation thickness in the channel method of laying pipelines are 30-50 % lower than those in channelless laying. The heat loss values, according to the results of the heat calculation for the options under consideration, in the channel method of laying are reduced by 47-65 %. The temperature fields formed around the pipelines of thermal networks with channelless laying significantly exceed the natural value of the soil temperature at the depth of the pipeline. What has a great influence on the determination of the distance to adjacent pipelines and other utilities, laid underground, in the zone of the thermal network. A comparative analysis of the results obtained makes it possible to single out the choice of the method of laying the pipeline into a group of measures aimed at energy saving and increasing energy efficiency in heating systems.


Sign in / Sign up

Export Citation Format

Share Document