scholarly journals Do climate envelope models transfer? A manipulative test using dung beetle introductions

2009 ◽  
Vol 276 (1661) ◽  
pp. 1449-1457 ◽  
Author(s):  
Richard P Duncan ◽  
Phillip Cassey ◽  
Tim M Blackburn

Climate envelope models (CEMs) are widely used to forecast future shifts in species ranges under climate change, but these models are rarely validated against independent data, and their fundamental assumption that climate limits species distributions is rarely tested. Here, we use the data on the introduction of five South African dung beetle species to Australia to test whether CEMs developed in the native range can predict distribution in the introduced range, where the confounding effects of dispersal limitation, resource limitation and the impact of natural enemies have been removed, leaving climate as the dominant constraint. For two of the five species, models developed in the native range predict distribution in the introduced range about as well as models developed in the introduced range where we know climate limits distribution. For the remaining three species, models developed in the native range perform poorly, implying that non-climatic factors limit the native distribution of these species and need to be accounted for in species distribution models. Quantifying relevant non-climatic factors and their likely interactions with climatic variables for forecasting range shifts under climate change remains a challenging task.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Mohammed A. Dakhil ◽  
Marwa Waseem A. Halmy ◽  
Walaa A. Hassan ◽  
Ali El-Keblawy ◽  
Kaiwen Pan ◽  
...  

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperuspingii var. pingii, J.tibetica, and J.komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16–56.1% and 20.4–38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models’ applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


2017 ◽  
Vol 18 (3) ◽  
pp. 879-896 ◽  
Author(s):  
Nachiketa Acharya ◽  
Allan Frei ◽  
Jie Chen ◽  
Leslie DeCristofaro ◽  
Emmet M. Owens

Abstract Watersheds located in the Catskill Mountains of southeastern New York State contribute about 90% of the water to the New York City water supply system. Recent studies show that this region is experiencing increasing trends in total precipitation and extreme precipitation events. To assess the impact of this and other possible climatic changes on the water supply, there is a need to develop future climate scenarios that can be used as input to hydrological and reservoir models. Recently, stochastic weather generators (SWGs) have been used in climate change adaptation studies because of their ability to produce synthetic weather time series. This study examines the performance of a set of SWGs with varying levels of complexity to simulate daily precipitation characteristics, with a focus on extreme events. To generate precipitation occurrence, three Markov chain models (first, second, and third orders) were evaluated in terms of simulating average and extreme wet days and dry/wet spell lengths. For precipitation magnitude, seven models were investigated, including five parametric distributions, one resampling technique, and a polynomial-based curve fitting technique. The methodology applied here to evaluate SWGs combines several different types of metrics that are not typically combined in a single analysis. It is found that the first-order Markov chain performs as well as higher orders for simulating precipitation occurrence, and two parametric distribution models (skewed normal and mixed exponential) are deemed best for simulating precipitation magnitudes. The specific models that were found to be most applicable to the region may be valuable in bottom-up vulnerability studies for the watershed, as well as for other nearby basins.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


2021 ◽  
Author(s):  
Philip Kuriachen ◽  
Asha Devi ◽  
Anu Susan Sam ◽  
Suresh Kumar ◽  
Jyoti Kumari ◽  
...  

Abstract Climate change and consequent variations in temperature pose a significant challenge for sustaining wheat production systems globally. In this study, the potential impact of rising temperature on wheat yield in the north Indian plains, India's major wheat growing region, was analyzed using panel data from the year 1981 to 2009. This study deviates from the majority of the previous studies by including non-climatic factors in estimating the impact of climate change. Two temperature measures were used for fitting the function, viz., Growing Season Temperature (GST) and Terminal Stage Temperature (TST), to find out the differential impact of increased temperature at various growth stages. Analysis revealed that there was a significant rise in both GST as well as TST during the study period. The magnitude of the annual increment in TST was twice that of GST. Wheat yield growth in the region was driven primarily by increased input resources such as fertilizer application and technological development like improved varieties and management practices. Most importantly, the study found that the extent of yield reduction was more significant for an increase in temperature at terminal crop growth stages. The yield reduction due to unit increase in TST was estimated to be 2.26 % while rise in GST by 1◦C resulted in yield reduction of 2.03%.


Author(s):  
Rajesh Bajpai ◽  
Manoj Semwal ◽  
C. P. Singh

The lichens are one of the most sensitive organism in nature among the different elements of biodiversity and can be affected more due to climate change. Lichens fulfil their water need from rain, fog and dew present in the atmosphere. The change in atmospheric temperature influence, to a greater extent, the thallus temperature and physiology of lichens which leads to emergence of new ecotype and finally the shift in a species. The impact of climatic factors on lichens ecophysiology, is different from higher plantsis due to the poikilohydric nature. The lichen bioindicator communities have been shown to exhibit correlation with climatic factors of an area. The changes in lichen biomass, frequency, diversity and indicatorcommunity indices, indicate changes in environmental gradients (temperature, humidity and UV radiation). A number of techniques regarding study the environmental and climatic change are available. However, the present correspondence hypothesized about some easy and low cost techniques to monitor climate change utilizing lichens. The overview will also leads to assess patterns of lichens responses with species representation and towards its understanding the current and future changes in climate of an area.


Author(s):  
Opeyemi Gbenga ◽  
H. I. Opaluwa ◽  
Awarun Olabode ◽  
Olowogbayi Jonathan Ayodele

Aim: Agriculture entails majorly crop and animal production. Crop and Livestock production provide the major human caloric and nutrition intake. Assessing the impact of climate change on crop and livestock productivity, is therefore critical to maintaining food supply in the world and particularly in Nigeria. Different studies have yielded different results in other parts of the world, it is therefore, very important to examine the linkage between climate change and agricultural productivity in Nigeria. Study Design: The study utilized secondary data. The study utilize climate data from Nigerian Meteorology Station and Carbon emission, Crop and Livestock production data from FOASTAT. Place and Duration of Study: The study was carried in Nigeria and it covers the period between 1970-2016. Methodology: The data were used to estimate the empirical models. Data were analyzed using descriptive statistics, trend analysis, stationarity, Co-integration and Fully-Modified Least Squares regression. Results: The result of the research reveals that there is variation in the trend of the climatic factors examined and also variation in crop and livestock production over the period covered by the study in Nigeria. The finding also shows that rainfall, temperature and Carbon emission are the climatic factors that significantly affect crop and livestock production in Nigeria. Long term adverse impact of climate change on crop and livestock production index indicates threat to food availability to the country. Conclusion: The study concluded that climatic variables have significant effect on agricultural productivity in Nigeria. The study recommended the need to put in place measures that will reduce the negative effects of climate on agricultural production.


2019 ◽  
Vol 86 ◽  
pp. 00013
Author(s):  
Elżbieta Jasińska

The subject of this publication is to determine what environmental and climatic factors can significantly affect the value of real estate. As a research object, there was chosen area surrounding the Gulf of Gdansk, which, like the entire coast, is attractive for investment and constitutes an interesting object as a space with a special focus on tourism, including short-term rental. Progressing climate change is particularly affecting this sector. It is safe to assume that unfavorable environmental conditions can significantly change the attractiveness of this area. Therefore, the research hypothesis about the correlation between climate aspects distinguishing the coastal belt and the distribution of real estate prices in the selected area has been verified. The area of the Gulf of Gdansk Coast and the technical and protective belt were analyzed. The weather situation on the coast is different from that prevailing in the rest of the country. There are strong and gusty winds, local floods, but at the same time a natural landscape, proximity to the sea and clean, iodized air. Other possible climatic factors have also been tracked, i.e. temperature, sea level and possible changes that may occur over the next years. The analyzes were based on the data of the KLIMAT project entitled "The impact of climate change on the environment, economy and society", and the Government Project KLIMADA and SPA analyzes. An in-depth analysis of the problem of combining planning documents for the maritime sector influencing the Study of Spatial Development of Polish Marine Areas with Local Spatial Management Plans, introduced Flood Risk Maps and Flood Risk Maps was also conducted.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ja Jung Ku ◽  
Sim Hee Han ◽  
Du Hyun Kim

AbstractSalix xerophila, S. maximowiczii, and S. koreensis are species of willow native to Korea that are important for bioenergy production. However, the native range of these species has narrowed in recent years due to the impact of climate change. Seeds of these Salix species lose viability within 4 weeks at ambient temperature, and within 4 months at -4°C. Preservation techniques are urgently needed to protect these valuable resources. The effects of seed water content (SWC; 3%, 6%, 9%, 12%, 18%, and 24%) and temperature (ambient, 4°C, -18°C, -80°C, and -196°C) on storage stability were investigated for up to 48, 52, or 60 months, depending on species. Optimal storage temperature and SWC varied between species. S. xerophila seed could be stored without deterioration for 60 months with 9% SWC at -80°C, but rapidly lost viability when stored at -18°C. In S. maximowiczii and S. koreensis, 100% and 90% of normal germination, respectively, was maintained with 18% SWC at -18°C or -80°C. Thus, for some Salix species, storage at -18 and -80°C may provide an economical alternative to cryopreservation or medium-term storage for the maintenance of seedbanks or breeding stocks.


Sign in / Sign up

Export Citation Format

Share Document