scholarly journals The dual nature of haemocyanin in the establishment and persistence of the squid–vibrio symbiosis

2014 ◽  
Vol 281 (1785) ◽  
pp. 20140504 ◽  
Author(s):  
Natacha Kremer ◽  
Julia Schwartzman ◽  
René Augustin ◽  
Lawrence Zhou ◽  
Edward G. Ruby ◽  
...  

We identified and sequenced from the squid Euprymna scolopes two isoforms of haemocyanin that share the common structural/physiological characteristics of haemocyanin from a closely related cephalopod, Sepia officinalis , including a pronounced Bohr effect. We examined the potential roles for haemocyanin in the animal's symbiosis with the luminous bacterium Vibrio fischeri . Our data demonstrate that, as in other cephalopods, the haemocyanin is primarily synthesized in the gills. It transits through the general circulation into other tissues and is exported into crypt spaces that support the bacterial partner, which requires oxygen for its bioluminescence. We showed that the gradient of pH between the circulating haemolymph and the matrix of the crypt spaces in adult squid favours offloading of oxygen from the haemocyanin to the symbionts. Haemocyanin is also localized to the apical surfaces and associated mucus of a juvenile-specific epithelium on which the symbionts gather, and where their specificity is determined during the recruitment into the association. The haemocyanin has an antimicrobial activity, which may be involved in this enrichment of V. fischeri during symbiont initiation. Taken together, these data provide evidence that the haemocyanin plays a role in shaping two stages of the squid–vibrio partnership.

2003 ◽  
Vol 69 (10) ◽  
pp. 5928-5934 ◽  
Author(s):  
Jessica McCann ◽  
Eric V. Stabb ◽  
Deborah S. Millikan ◽  
Edward G. Ruby

ABSTRACT The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Fangmin Chen ◽  
Benjamin C. Krasity ◽  
Suzanne M. Peyer ◽  
Sabrina Koehler ◽  
Edward G. Ruby ◽  
...  

ABSTRACT We characterized bactericidal permeability-increasing proteins (BPIs) of the squid Euprymna scolopes , EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid’s symbiont, Vibrio fischeri , which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes , modulating interactions with the symbiont. IMPORTANCE This study describes new functions for bactericidal permeability-increasing proteins (BPIs), members of the lipopolysaccharide-binding protein (LBP)/BPI protein family. The data provide evidence that these proteins play a dual role in the modulation of symbiotic bacteria. In the squid-vibrio model, these proteins both control the symbiont populations in the light organ tissues where symbiont cells occur in dense monoculture and, concomitantly, inhibit the symbiont from colonizing other epithelial surfaces of the animal.


2012 ◽  
Vol 78 (13) ◽  
pp. 4620-4626 ◽  
Author(s):  
Mark J. Mandel ◽  
Amy L. Schaefer ◽  
Caitlin A. Brennan ◽  
Elizabeth A. C. Heath-Heckman ◽  
Cindy R. DeLoney-Marino ◽  
...  

ABSTRACTChitin, a polymer ofN-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the familyVibrionaceae(“vibrios”), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacteriumVibrio fischeriis the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid,Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements.V. fischericells are harvested from seawater during each host generation, andV. fischeriis the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria.V. fischeriuses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1014
Author(s):  
Polly-Anne Jeffrey ◽  
Martín López-García ◽  
Mario Castro ◽  
Grant Lythe ◽  
Carmen Molina-París

Cellular receptors on the cell membrane can bind ligand molecules in the extra-cellular medium to form ligand-bound monomers. These interactions ultimately determine the fate of a cell through the resulting intra-cellular signalling cascades. Often, several receptor types can bind a shared ligand leading to the formation of different monomeric complexes, and in turn to competition for the common ligand. Here, we describe competition between two receptors which bind a common ligand in terms of a bi-variate stochastic process. The stochastic description is important to account for fluctuations in the number of molecules. Our interest is in computing two summary statistics—the steady-state distribution of the number of bound monomers and the time to reach a threshold number of monomers of a given kind. The matrix-analytic approach developed in this manuscript is exact, but becomes impractical as the number of molecules in the system increases. Thus, we present novel approximations which can work under low-to-moderate competition scenarios. Our results apply to systems with a larger number of population species (i.e., receptors) competing for a common resource (i.e., ligands), and to competition systems outside the area of molecular dynamics, such as Mathematical Ecology.


1965 ◽  
Vol 13 (3) ◽  
pp. 155-160 ◽  
Author(s):  
H. J. KEUTEL

Fluorescent labeled antibodies were used for the demonstration of uromucoid. This urine specific mucoprotein is demonstrably present only in the epithelial cells of the proximal segments of the normal human renal tubules and in the matrix of human kidney stones of all the common crystalline compositions.


2003 ◽  
Vol 185 (12) ◽  
pp. 3547-3557 ◽  
Author(s):  
Deborah S. Millikan ◽  
Edward G. Ruby

ABSTRACT Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium's ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative σ54-dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is similar to motility master-regulator operons of Vibrio cholerae and Vibrio parahaemolyticus. In addition, examination of regulatory regions of a number of flagellar operons in V. fischeri revealed apparent σ54 recognition motifs, suggesting that the flagellar regulatory hierarchy is controlled by a similar mechanism to that described in V. cholerae. However, in contrast to its closest known relatives, flrA mutant strains of V. fischeri ES114 were completely abolished in swimming capability. Although flrA provided in trans restored motility to the flrA mutant, the complemented strain was unable to reach wild-type levels of symbiotic colonization in juvenile squid, suggesting a possible role for the proper expression of FlrA in regulating symbiotic colonization factors in addition to those required for motility. Comparative RNA arbitrarily primed PCR analysis of the flrA mutant and its wild-type parent revealed several differentially expressed transcripts. These results define a regulon that includes both flagellar structural genes and other genes apparently not involved in flagellum elaboration or function. Thus, the transcriptional activator FlrA plays an essential role in regulating motility, and apparently in modulating other symbiotic functions, in V. fischeri.


2021 ◽  
pp. 1-10
Author(s):  
Mona M. Moussa ◽  
Rasha Shoitan ◽  
Mohamed S. Abdallah

Finding the common objects in a set of images is considered one of the recent challenges in different computer vision tasks. Most of the conventional methods have proposed unsupervised and weakly supervised co-localization methods to find the common objects; however, these methods require producing a huge amount of region proposals. This paper tackles this problem by exploiting supervised learning benefits to localize the common object in a set of unlabeled images containing multiple objects or with no common objects. Two stages are proposed to localize the common objects: the candidate box generation stage and the matching and clustering stage. In the candidate box generation stage, the objects are localized and surrounded by the bounding boxes. The matching and clustering stage is applied on the generated bounding boxes and creates a distance matrix based on a trained Siamese network to reflect the matching percentage. Hierarchical clustering uses the generated distance matrix to find the common objects and create clusters for each one. The proposed method is trained on PASCAL VOC 2007 dataset; on the other hand, it is assessed by applying different experiments on PASCAL VOC 2007 6×2 and Object Discovery datasets, respectively. The results reveal that the proposed method outperforms the conventional methods by 8% to 40% in terms of corloc metric.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Guoliang Xu ◽  
Xia Wang ◽  
Ming Li ◽  
Zhucui Jing

AbstractWe present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.


2021 ◽  
Vol 28 (3) ◽  
pp. 234-237
Author(s):  
Gleb D. Stepanov

This article describes an algorithm for obtaining a non-negative basic solution of a system of linear algebraic equations. This problem, which undoubtedly has an independent interest, in particular, is the most time-consuming part of the famous simplex method for solving linear programming problems.Unlike the artificial basis Orden’s method used in the classical simplex method, the proposed algorithm does not attract artificial variables and economically consumes computational resources.The algorithm consists of two stages, each of which is based on Gaussian exceptions. The first stage coincides with the main part of the Gaussian complete exclusion method, in which the matrix of the system is reduced to the form with an identity submatrix. The second stage is an iterative cycle, at each of the iterations of which, according to some rules, a resolving element is selected, and then a Gaussian elimination step is performed, preserving the matrix structure obtained at the first stage. The cycle ends either when the absence of non-negative solutions is established, or when one of them is found.Two rules for choosing a resolving element are given. The more primitive of them allows for ambiguity of choice and does not exclude looping (but in very rare cases). Use of the second rule ensures that there is no looping.


Sign in / Sign up

Export Citation Format

Share Document