scholarly journals Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish

2015 ◽  
Vol 282 (1802) ◽  
pp. 20142189 ◽  
Author(s):  
Andrew I. Furness ◽  
David N. Reznick ◽  
Mark S. Springer ◽  
Robert W. Meredith

Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit desiccation resistant eggs that can undergo diapause, a period of developmental arrest, enabling them to traverse the otherwise inhospitable dry season. Environmental cues that potentially indicate the season can govern whether eggs enter a stage of diapause mid-way through development or skip this diapause and instead undergo direct development. We report, based on construction of a supermatrix phylogenetic tree of the order Cyprinodontiformes and a battery of comparative analyses, that the ability to produce diapause eggs evolved independently at least six times within African and South American killifish. We then show in species representative of these lineages that embryos entering diapause display significant reduction in development of the cranial region and circulatory system relative to direct-developing embryos. This divergence along alternative developmental pathways begins mid-way through development, well before diapause is entered, during a period of purported maximum developmental constraint (the phylotypic period). Finally, we show that entering diapause is accompanied by a dramatic reduction in metabolic rate and concomitant increase in long-term embryo survival. Morphological divergence during the phylotypic period thus allows embryos undergoing diapause to conserve energy by shunting resources away from energetically costly organs thereby increasing survival chances in an environment that necessitates remaining dormant, buried in the soil and surrounded by an eggshell for much of the year. Our results indicate that adaptation to seasonal aquatic environments in annual killifish imposes strong selection during the embryo stage leading to marked diversification during this otherwise conserved period of vertebrate development.

2017 ◽  
Vol 108 (3) ◽  
pp. e59-e60
Author(s):  
R. Kile ◽  
Y. Yuan ◽  
H. Silz ◽  
S. McCormick ◽  
W.B. Schoolcraft ◽  
...  

Author(s):  
Verónica Schiariti ◽  
Rune J. Simeonsson ◽  
Karen Hall

In the early years of life, children’s interactions with the physical and social environment- including families, schools and communities—play a defining role in developmental trajectories with long-term implications for their health, well-being and earning potential as they become adults. Importantly, failing to reach their developmental potential contributes to global cycles of poverty, inequality, and social exclusion. Guided by a rights-based approach, this narrative review synthesizes selected studies and global initiatives promoting early child development and proposes a universal intervention framework of child-environment interactions to optimize children’s developmental functioning and trajectories.


2021 ◽  
Vol 22 (12) ◽  
pp. 6313
Author(s):  
Marcelo T. Moura ◽  
Laís B. Latorraca ◽  
Fabíola F. Paula-Lopes

Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aden Forrow ◽  
Geoffrey Schiebinger

AbstractUnderstanding the genetic and epigenetic programs that control differentiation during development is a fundamental challenge, with broad impacts across biology and medicine. Measurement technologies like single-cell RNA-sequencing and CRISPR-based lineage tracing have opened new windows on these processes, through computational trajectory inference and lineage reconstruction. While these two mathematical problems are deeply related, methods for trajectory inference are not typically designed to leverage information from lineage tracing and vice versa. Here, we present LineageOT, a unified framework for lineage tracing and trajectory inference. Specifically, we leverage mathematical tools from graphical models and optimal transport to reconstruct developmental trajectories from time courses with snapshots of both cell states and lineages. We find that lineage data helps disentangle complex state transitions with increased accuracy using fewer measured time points. Moreover, integrating lineage tracing with trajectory inference in this way could enable accurate reconstruction of developmental pathways that are impossible to recover with state-based methods alone.


2010 ◽  
Vol 31 (3) ◽  
pp. 252-287 ◽  
Author(s):  
Katie Barnfield ◽  
Isabelle Buchstaller

We report on longitudinal changes in the system of intensification in an innovative corpus that spans five decades of dialectal speech. Our analyses allow us — for the first time in a British context — to trace the quantitative development in the variable across four generations. Longitudinal analysis across real and apparent time determines the effect of extralinguistic and intralinguistic variables on intensification in Tyneside and tests to what extent real time data corroborates trends reported from previous apparent time analyses. Long-term competition within the variable manifests itself in distinctive developmental trajectories: expansion — both proportionally within the variable as well as across adjectival categories — tends to follow one of three types of patterns, exemplified, respectively, by really, so and dead. Variant retraction, however, follows only one schema. Importantly, numerical decline in the system does not necessarily go hand in hand with a reduction in breadth of application.


2021 ◽  
Vol 35 (10) ◽  
Author(s):  
Maurício Dambros Melati ◽  
Fernando Mainardi Fan ◽  
Gustavo Barbosa Athayde ◽  
Pedro Antônio Roehe Reginato ◽  
Walter Collischonn ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Binaya Wasti ◽  
Shao-kun Liu ◽  
Xu-Dong Xiang

Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.


2021 ◽  
Vol 5 (10) ◽  
Author(s):  
Li-Yin Pang ◽  
Shola Sonagara ◽  
Oreoluwatomide Oduwole ◽  
Christopher Gibbins ◽  
Ting Kang Nee

Over the past few decades, microplastics have become increasingly ubiquitous in the environment and now contaminate the bodies of many living organisms, including humans. Microplastics, as defined here, are plastics within the size range 0.1 μm and 5 mm and are a worrying form of pollution due to public health concerns. This mini-review aims to summarise the route of entry of microplastics into humans and explore the potential detrimental health effects of microplastics. Trophic transfer is an important pathway for microplastic to be transferred across different groups of organisms, with ingestion is regarded as one of the major routes of exposure for humans. Other pathways include inhalation and dermal contact. The health consequences of microplastics manifest because these materials can translocate into the circulatory system and accumulate in the lungs, liver, kidney, and even brain, regardless of the route of entry. Health effects include gastrointestinal disturbances such as inflammation and gut microbiota disruption, respiratory conditions, neurotoxicity and potential cancers. Overall, while it is apparent that microplastics are causing adverse effects on different biological groups and ecosystems, current research is largely focused on marine organisms and aquaculture. Therefore, more studies are needed to investigate specific effects in mammalian cells and tissues, with more long-term epidemiological studies needed on human population considered to be at high-risk due to socioeconomic or other circumstance. Knowledge of the toxicity and long-term health impacts of microplastics is currently limited and requires urgent attention.


2012 ◽  
Vol 36 (4) ◽  
pp. 247-257 ◽  
Author(s):  
David Y. C. Huang ◽  
H. Isabella Lanza ◽  
Debra A. Murphy ◽  
Yih-Ing Hser

This study used data from 5,382 adolescents from the 1997 United States (US) National Longitudinal Survey of Youth (NLSY97) to investigate developmental pathways of alcohol use, marijuana use, sexual risk behaviors, and delinquency across ages 14 to 20; examine interrelationships among these risk behaviors across adolescence; and evaluate association between risk behavior trajectories and depressive symptoms in adolescence. Group-based dual trajectory modeling, examining trajectories of two outcomes over time, revealed strong interrelationships among developmental trajectories of the four risk behaviors, and indicated potential pathways to co-occurring risk behaviors. Adolescents with higher levels of alcohol use or marijuana use were more likely to engage in higher levels of early sexual risk-taking and delinquency. Moreover, adolescents involved in higher levels of delinquency were at higher risk for engaging in early sexual risk-taking. Also, belonging to the highest risk trajectory of any of the four risk behaviors was positively associated with depressive symptoms in adolescence.


Sign in / Sign up

Export Citation Format

Share Document