scholarly journals Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals

2019 ◽  
Vol 286 (1899) ◽  
pp. 20182592 ◽  
Author(s):  
Paul J. Wensveen ◽  
Saana Isojunno ◽  
Rune R. Hansen ◽  
Alexander M. von Benda-Beckmann ◽  
Lars Kleivane ◽  
...  

Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags ( n = 1 per experiment) or medium-resolution satellite tags ( n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8–28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117–126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.

2017 ◽  
Vol 4 (7) ◽  
pp. 170286 ◽  
Author(s):  
Lonnie Mikkelsen ◽  
Line Hermannsen ◽  
Kristian Beedholm ◽  
Peter Teglberg Madsen ◽  
Jakob Tougaard

Acoustic harassment devices (AHD) or ‘seal scarers’ are used extensively, not only to deter seals from fisheries, but also as mitigation tools to deter marine mammals from potentially harmful sound sources, such as offshore pile driving. To test the effectiveness of AHDs, we conducted two studies with similar experimental set-ups on two key species: harbour porpoises and harbour seals. We exposed animals to 500 ms tone bursts at 12 kHz simulating that of an AHD (Lofitech), but with reduced output levels (source peak-to-peak level of 165 dB re 1 µPa). Animals were localized with a theodolite before, during and after sound exposures. In total, 12 sound exposures were conducted to porpoises and 13 exposures to seals. Porpoises were found to exhibit avoidance reactions out to ranges of 525 m from the sound source. Contrary to this, seal observations increased during sound exposure within 100 m of the loudspeaker. We thereby demonstrate that porpoises and seals respond very differently to AHD sounds. This has important implications for application of AHDs in multi-species habitats, as sound levels required to deter less sensitive species (seals) can lead to excessive and unwanted large deterrence ranges on more sensitive species (porpoises).


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Travis Park ◽  
Bastien Mennecart ◽  
Loïc Costeur ◽  
Camille Grohé ◽  
Natalie Cooper

Abstract Background Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. Results We identified three convergent regimes: (1) True’s (Mesoplodon mirus) and Cuvier’s (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall’s porpoise (Phocoenoides dalli). Interestingly the ‘river dolphins’, a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. Conclusions The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.


2015 ◽  
Vol 8 ◽  
Author(s):  
A. Mel Cosentino

Orcinus orcais a cosmopolitan species and the most widely distributed marine mammal. Its diet includes over 140 species of fish, cephalopods, sea birds and marine mammals. However, many populations are specialised on certain specific prey items. Three genetically distinct populations have been described in the North Atlantic. Population A (that includes the Icelandic and Norwegian sub-populations) is believed to be piscivorous, as is population C, which includes fish-eating killer whales from the Strait of Gibraltar. In contrast, population B feeds on both fish and marine mammals. Norwegian killer whales follow the Norwegian spring spawning herring stock. The only description in the literature of Norwegian killer whales feeding on another cetacean species is a predation event on northern bottlenose whales in 1968. Daily land-based surveys targeting sperm whales were conducted from the Andenes lighthouse using BigEyes®binoculars (25×, 80 mm). The location of animals at sea was approximated through the use of an internal reticule system and a graduated wheel. On 24 June 2012 at 3:12 am, an opportunistic sighting of 11 killer whales was made off Andenes harbour. The whales hunted and fed on a harbour porpoise. Despite these species having overlapping distributions in Norwegian waters, this is the first predatory event reported in the literature.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joëlle De Weerdt ◽  
Eric Angel Ramos ◽  
Etienne Pouplard ◽  
Marc Kochzius ◽  
Phillip Clapham

AbstractDocumenting marine mammal strandings provides important information needed to understand the occurrence and distribution patterns of species. Here, we report on strandings of cetaceans on the Pacific (n = 11) and Caribbean (n = 2) coasts of Nicaragua, documented opportunistically from 2014 to 2021. Strandings included three species of baleen whale (blue whale Balaenoptera musculus, Bryde’s whale Balaenoptera edeni, humpback whale Megaptera novaeangliae) and five species of toothed whale (dwarf sperm whale Kogia sima, Guiana dolphin Sotalia guianensis, pantropical spotted dolphin Stenella attenuata, spinner dolphin Stenella longirostris, Cuvier’s beaked whale Ziphius cavirostris). These are the first published accounts of blue whales, Bryde’s whales, dwarf sperm whales, and Cuvier’s beaked whales in Nicaraguan waters. Limited resources and the advanced decomposition of animals prevented necropsies in most cases, the identification of the causes of mortality in all cases, and the species identification of two dolphins. Information derived from these stranding events offers new insights into the occurrence of marine mammals on the Pacific and Caribbean coasts of Nicaragua and Central America.


2021 ◽  
Vol 13 (11) ◽  
pp. 2233
Author(s):  
Rasa Janušaitė ◽  
Laurynas Jukna ◽  
Darius Jarmalavičius ◽  
Donatas Pupienis ◽  
Gintautas Žilinskas

Satellite remote sensing is a valuable tool for coastal management, enabling the possibility to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a wide range of data with morphological nearshore characteristics, which include nearshore local relief, extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results against 4 years of in situ bathymetric surveys shows a strong agreement between measured and derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant spatiotemporal scale. The design of the method determines its compatibility with most sandbar morphologies and suitability to other sandy nearshores. Tests of the described technique with Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium resolution satellite imagery of other sensors.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


2003 ◽  
Vol 89 (6) ◽  
pp. 3070-3082 ◽  
Author(s):  
Jason S. Rothman ◽  
Paul B. Manis

In the ventral cochlear nucleus (VCN), neurons transform information from auditory nerve fibers into a set of parallel ascending pathways, each emphasizing different aspects of the acoustic environment. Previous studies have shown that VCN neurons differ in their intrinsic electrical properties, including the K+ currents they express. In this study, we examine these K+ currents in more detail using whole cell voltage-clamp techniques on isolated VCN cells from adult guinea pigs at 22°C. Our results show a differential expression of three distinct K+ currents. Whereas some VCN cells express only a high-threshold delayed-rectifier-like current ( IHT), others express IHT in combination with a fast inactivating current ( IA) and/or a slow-inactivating low-threshold current ( ILT). IHT, ILT, and IA, were partially blocked by 1 mM 4-aminopyridine. In contrast, only ILT was blocked by 10–100 nM dendrotoxin-I. A surprising finding was the wide range of levels of ILT, suggesting ILT is expressed as a continuum across cell types rather than modally in a particular cell type. IA, on the other hand, appears to be expressed only in cells that show little or no ILT, the Type I cells. Boltzmann analysis shows IHT activates with 164 ± 12 (SE) nS peak conductance, -14.3 ± 0.7 mV half-activation, and 7.0 ± 0.5 mV slope factor. Similar analysis shows ILT activates with 171 ± 22 nS peak conductance, -47.4 ± 1.0 mV half-activation, and 5.8 ± 0.3 mV slope factor.


2020 ◽  
Author(s):  
Douglas Gillespie ◽  
Laura Palmer ◽  
Jamie Macaulay ◽  
Carol Sparling ◽  
Gordon Hastie

AbstractA wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


2014 ◽  
Author(s):  
Raymond W. Fischer ◽  
Louis M. Pettit

There is a price to be paid to achieve compliance with the acoustic requirements imposed by regulatory agencies. Acoustic requirements typically appear in ship specifications as airborne and/or underwater radiated noise limits as the need to preclude hearing loss for crew members and the need to control sound levels experienced by marine mammals receive more recognition. Recent changes and additions to regulatory body requirements addressing compartment airborne noise and underwater radiated noise can be found in IMO Resolution MSC.337(91) Annex 1 and Annex 2 which state that IMO Resolution A.468(XII) “Code on Noise Levels Onboard Ships” shall take effect on 1 July 2014 for all SOLAS compliant vessels. Thus the airborne noise levels in compartments and at on-deck work stations onboard as-built ships seeking a SOLAS certificate will need to be measured, and must demonstrate compliance with noise limits stated in paragraph 4.2 of IMO Resolution A.468(XII). IMO “Guidelines for the Reduction of Underwater Noise from Commercial Shipping to Address Adverse Impacts on Marine Life” dated 7 April 2014 and agencies such as ICES and DNV have established guidance and/or criteria for control of underwater radiated noise from vessels, and these too are now commonly appearing in ship specifications. Specifications referencing such criteria typically require that compliance be demonstrated by at-sea testing of underwater radiated noise. Making the correct decisions during the ship design process will minimize costs for noise control and will provide a positive return on investment. The process of how best to comply with noise limits while minimizing costs through optimization of noise control treatments and design approaches is discussed.


Sign in / Sign up

Export Citation Format

Share Document